Terahertz wireless communications: A photonics approach

Daniel Mittleman School of Engineering Brown University daniel_mittleman@brown.edu

THz systems: an ongoing merger of electronics and photonics

K. Sengupta, T. Nagatsuma, & D. Mittleman, *Nature Electronics*, 1, 622 (2018).

THz links are highly directional

Signals which propagate as beams, not broadcasts, can often conveniently be considered in the context of optics.

Brown University test bed:

Frequency	<u>100 GHz</u>	<u>200 GHz</u>	<u>400 GH</u>
Directivity	28 dBi	34 dBi	42 dBi
Angular width	7.8°	4.0°	1.6º

THz wireless test bed at Brown University

Carrier Frequency	100 GHz	200 GHz	400 GHz
IF frequency		1 GHz	
LO frequency		12.25 GHz	
PRBS		$2^{7} - 1$	
Max. Tx output power	24 dBm	20 dBm	10 dBm
Tx/Rx antenna gain	21 dB	21 dB	26 dB
Tx beam directivity (angular full-width)	28 dBi (7.8°)	34 dBi (4°)	42 dBi (1.6°)
Detector responsivity	2400 V/W	6200 V/W	1700 V/W
Detector NEP	3 pW/√Hz	3 pW/√Hz	$1.9 \text{ pW}/\sqrt{\text{Hz}}$
Tx/Rx polarization		vertical	

Brown University: Two-year experimental license from FCC for outdoor tests up to 400 GHz

Reflections off a wall

J. Ma, et al., APL Photonics, 3, 051601 (2018)

Non-line-of-sight links

Specular non-line-of-sight links are surprisingly robust in indoor environments.

Metal parallel-plate waveguides: a platform for terahertz devices

R. Mendis and D. Mittleman, *Opt. Express*, **17**, 14839 (2009).

Coupling two waveguides together

Key component: electrically actuated liquid metal plug

Collaboration with: M. D. Dickey, North Carolina State University

Electrically actuated filter at 120 GHz

Resonant coupling between two adjacent waveguides.

Frequency determined by geometry of coupling region – a classic problem in optics!

K. Reichel, et al. Nature Commun. 9, 4202 (2018)

Leaky wave devices: a candidate for multiplexing

A guided wave device with an opening so that some energy can "leak" out...

For this to work, the guided mode must be a <u>fast wave</u>, with $v_{phase} > c_0 \rightarrow TE$ waveguide mode

Multiplexing: the idea

Terahertz signals are highly directional. Distinct frequencies can be associated with distinct propagation directions.

N. Karl, et al., *Nature Photonics*, **7**, 717 (2015)

Multiplexing two independent THz signals

Directional THz links: eavesdropping

• Small enough to avoid casting a shadow on Bob

Eavesdropping test bed

Directional THz links: measuring scattered light

J. Ma, et al., *Nature*, **563**, 89 (2018)

Directional THz links: blockage, secrecy capacity

J. Ma, et al., *Nature*, **563**, 89 (2018)

Directional THz links: blockage, secrecy capacity

Metal plates: even more effective (although Eve has less freedom)

Eavesdropping using a tuned beam splitter

Conclusions

- THz communications: will be inevitable
- Many challenges remain
- THz links: this is not merely 'microwaves with a few extra zeros.' Things are fundamentally different.
- Channel characteristics: there is still a lot of 'conventional wisdom' that needs correcting.
- Borrowing ideas from optics: very inspiring!

Funding:

