| HORI      | ZON 2020                                            | Deliverable<br>ID:                | Preparation date:           |  |  |  |
|-----------|-----------------------------------------------------|-----------------------------------|-----------------------------|--|--|--|
| *         | ***                                                 | D2.4                              | 03 April 2019               |  |  |  |
| ÷         | * + *                                               | Milestone: Final Proposed         |                             |  |  |  |
|           |                                                     | Title:                            |                             |  |  |  |
| tere      | apod                                                | Initial Research Alignment Report |                             |  |  |  |
|           |                                                     |                                   | peneficiary (name/partner): |  |  |  |
|           | z based Ultra High                                  | Alan Davy                         |                             |  |  |  |
|           | th Wireless Access                                  |                                   | viewed by (name/partner):   |  |  |  |
| Networks  | 5                                                   | •                                 | enaud / UCL                 |  |  |  |
|           |                                                     |                                   | ozakov / DER                |  |  |  |
|           |                                                     | Approved by                       | :                           |  |  |  |
|           |                                                     | PSC                               |                             |  |  |  |
|           |                                                     |                                   |                             |  |  |  |
|           | Di                                                  | ssemination                       | level                       |  |  |  |
| PU Public |                                                     |                                   | Х                           |  |  |  |
|           | ential, only for members of ng Commission Services) | the consortiur                    | n                           |  |  |  |

|         | Revisions  |                         |              |                                    |  |  |  |  |  |  |  |  |  |
|---------|------------|-------------------------|--------------|------------------------------------|--|--|--|--|--|--|--|--|--|
| Version | Date       | Author                  | Organisation | Details                            |  |  |  |  |  |  |  |  |  |
| 0.1     | 21/05/2018 | Alan Davy               | WIT          | PSOC                               |  |  |  |  |  |  |  |  |  |
| 0.2     | 15/08/2018 | Fiach O'Donnell         | DER          | Draft Content for Sections 1 and 2 |  |  |  |  |  |  |  |  |  |
| 0.3     | 01/10/2018 | Alan Davy, Saim Ghafoor | WIT          | Section 2 to 4                     |  |  |  |  |  |  |  |  |  |
| 0.4     | 21/03/2019 | Saim Ghafoor            | WIT          | Revised as per reviewer comments   |  |  |  |  |  |  |  |  |  |

## Table of contents

| Table of contents                                                    |    |
|----------------------------------------------------------------------|----|
| List of figures                                                      | v  |
| List of tables                                                       | vi |
| Executive summary                                                    | 1  |
| 1 Introduction                                                       |    |
| 1.1 Summary                                                          |    |
| 1.2 Structure of this document                                       |    |
| 1.3 Relationships with other deliverables                            | 3  |
| 1.4 Contributors                                                     |    |
| 2 Research Alignment within the Project                              | 4  |
| 2.1 Overview                                                         | 4  |
| 2.1.1 Use cases                                                      | 4  |
| 2.1.2 Requirements                                                   | 4  |
| 2.1.3 Demonstrators                                                  | 5  |
| 2.2 Methodology                                                      | 5  |
| 2.3 Research alignment based on each use case and partner activities | 7  |
| 3 Research Alignment with State of the Art                           |    |
| 3.1 Alignment of TERAPOD project with other projects                 | 19 |
| 4 Conclusion/Further work                                            |    |
| 5 References                                                         |    |



# List of figures

| Figure 1: Research alignment methodology. | 6  |
|-------------------------------------------|----|
| Figure 2: Terahertz cluster projects.     | 18 |



## List of tables

| Table 1: TSSG, research alignment summary                                           | 7  |
|-------------------------------------------------------------------------------------|----|
| Table 2: DER, research alignment summary                                            | 9  |
| Table 3: TUBS, research alignment summary                                           | 11 |
| Table 4: INESC TECH, research alignment summary                                     | 12 |
| Table 5: VLC, research alignment summary                                            |    |
| Table 6: NPL, research alignment summary                                            |    |
| Table 7: UGLA, research alignment summary                                           |    |
| Table 8: ACST, research alignment summary                                           | 16 |
| Table 9: Alignment of TERAPOD project with other projects                           | 21 |
| Table 10: Terahertz cluster projects functionalities, KPIs and requirements         |    |
| Table 11: Terahertz cluster projects scenarios, technical requirements and outcomes |    |
|                                                                                     |    |



#### Executive summary

The Initial Research Alignment Report helps assess, validate and align the proposed technological developments of the project with the goals and requirements of the use cases. It closely aligns the work within the technical work packages to the scenarios previously specified.

The objective of this deliverable is to report on the activities of T2.2 which focuses on:

- aligning the research activities carried out with the project to the set of use case requirements that were initially defined
- validation and demonstration of the work through the demonstrators
- reporting on how the work is also aligned with recent emerging State of the Art activities in the area of THz communication.



## **1** Introduction

#### 1.1 Summary

This deliverable presents the Initial Research Alignment Report for the TERAPOD project. It closely aligns and integrates the technological developments and research from other work packages (particularly WPs 3-5) with the use case scenarios previously specified in D2.1. The task activities for the various WPs are reviewed and each is described in detail, aligning to the aforementioned requirements. These activities are also associated with the demonstrators outlined in the TERAPOD proposal.

#### 1.2 Structure of this document

This document is laid out as follows:

- Section 1 acts as an introduction to this deliverable, in summary, what it presents along with its relationship to other deliverables within the TERAPOD project and details what partners have helped contribute to this text.
- Section 2 provides an overview of how technical activities from the various WPs are mapped to requirements, in the form of the use case scenarios. It also aligns these activities to the respective demonstrators outlined in the TERAPOD proposal, where all activities are validated and demonstrated by at least one demonstrator.
- Section 3 presents how activities within TERAPOD align with other State-of-the-Art activities and technologies within the THz space across Europe and internationally. It details certain areas and publications related to the overall goals of the project.
- Section 4 provides conclusions and a summary of the next steps in relation to the project.

#### 1.3 Relationships with other deliverables

The content presented in this document relates to the following deliverables:

 D2.1 – Initial Requirements and Scenario Specifications: this document presents an overview of the use case scenarios and detailed requirements

#### **1.4 Contributors**

The following partners have contributed to this deliverable:

- TSSG (Alan Davy)
- DER (Fiach O'Donnell)
- TSSG (Saim Ghafoor)



## 2 Research Alignment within the Project

This section will provide a bird-eye view of the mapping of requirements to WP activities and demonstrators, ensuring that all activities are tied to at least 1 requirement and that all requirements are being validated and demonstrated by at least one demonstrator.

### 2.1 Overview

The requirements for different use cases (mentioned below) are already discussed in detail in deliverable D2.1. It is important before developing any research alignment that each partner agrees on the broad definition of the requirements and use cases. A clear understanding of these requirements and demonstrator help in using the efforts towards the required deliverables. Therefore, initially, the requirements and demonstrators will be explained in this document, followed by the methodology to establish a mapping between the task activities, requirements and the demonstrators for each partner.

#### 2.1.1 Use cases

There are four use cases which were finalised to establish the feasibility of Terahertz band communication within a Data Centre environment. These use cases are mentioned and discussed in much detail in Deliverable D-2.1 (Initial requirements and scenario specifications). We can summarise as follows;

1. TERAPOD-UC-01: Commercial Feasibility of THz DC Wireless Networks

In this use case, a commercial feasibility of Terahertz band is aimed to be established within a data center environment. The functional and non-functional requirements might influence the implementation of such high transmission rate bands. Therefore, different aspects for devices, antennas, transceivers, materials, and communications are considered and established to achieve the Terahertz link expected performances. The considered factors also include the geometry of data centers, topologies, achievable rates, power consumption, channel modeling, and environmental effects. All these are considered to asses the feasibility to establish a wireless Terahertz link.

2. TERAPOD-UC-02A: Static (Layer-1) THz Wireless Data Links

This use case is focused on the integration of static Terahertz wireless link within a Data center environment. It also includes the performance comparison of Terahertz wireless link with wired links (optical) in terms of achievable data rate and feasibility of point to point communication. The important factors in achieving the point to point connectivity are to analyse the device and transceiver characteristics with antenna alignment to establish the distance achievable with required throughput and delay.

3. TERAPOD-UC-02B: Dynamic (Multi-Layer) THz Wireless Data Link Integration

This use case is focused on point to multipoint communications and analysis of different network aspects including network congestion, minimising link downtime, delay and maximising throughput. It is also focused on developing efficient networking protocols to implement on-the-fly and flexible solutions.

4. TERAPOD-UC-03: Wireless Data Centre Auto-Configuration

This use case involves the full integration of wireless Terahertz link within a data center with auto-configuration which includes automated device discovery, configuration, and synchronization with existing devices. It also involves the automated re-configuration of beam-direction, range, and other appropriate parameters.

#### 2.1.2 Requirements

Various functional and non-functional requirements are already listed in D-2.1, and therefore are not discussed here. A summary of the requirements for each use case is given below.



- 1. Use case 1: includes requirements for end-user; data transmission; scenario; interface including topologies, geometry, safety and workloads; and technology. Non-functions requirements include the testing and validation, cost and commercial factors and licensing considerations.
- Use case 2A: includes the data transmission including data rate, bit error rate, and power consumption; detailed description of scenario; interface requirements including components and external systems with traffic load and links; technology including the communication layer parameters; device including transmitter and receiver devices such as RTDs or UTC-PDs; and non-functional requirements.
- 3. Use case 2B:

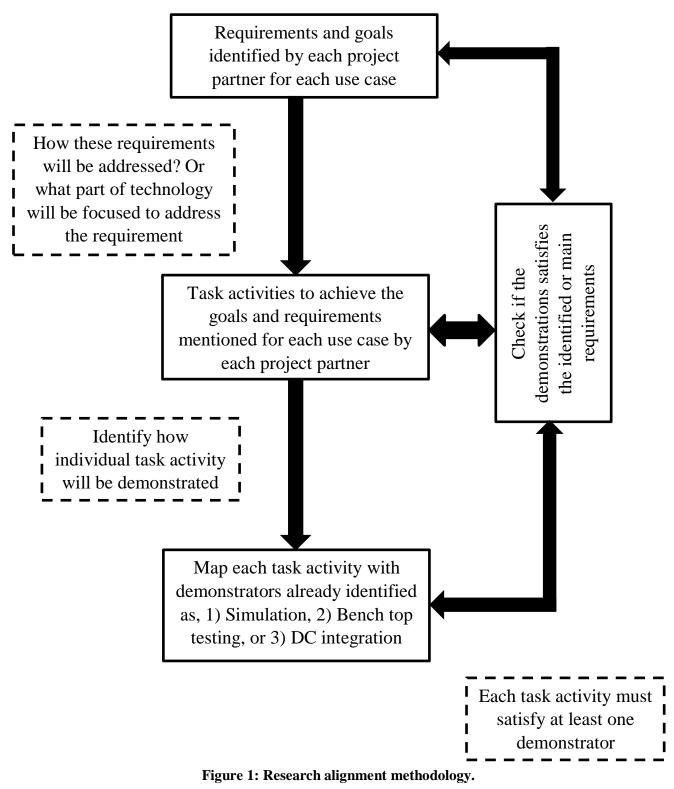
Analogous to use case 2A.

4. Use case 3B:

Mostly same as for use case 2A and 2B, the details about the communication parameters are outlined in D-2.1.

#### **2.1.3 Demonstrators**

The implementation, configuration and achieved goals will be validated using the following demonstrators:


- 1. Simulation: Simulation for proof of concept and end-to-end performance analysis.
- 2. Bench-top testing: Bench-top testing for implementation of point-to-point Terahertz wireless link, beam formation, spatial configuration and other designed configurations for different devices and components.
- 3. DC Integration: Integration and analysis of Terahertz Wireless link within a Data Centre environment

#### 2.2 Methodology

The main objective for this methodology is to track down the progress and research outputs and their mapping with the demonstrators and requirements, essentially through the involved task activities. The research alignment should evolve with project knowledge and progress throughout the project lifeline. The following methodology is used to track the project progress.

- 1. The requirements and goals for each use case scenario will be identified by each project partner individually.
- 2. Task activities should be identified clearly, as to how these requirements or goals can be achieved.
- 3. The proof-of-concept for each task activity should be shown using one of the identified demonstrators.
- 4. The identified demonstrators and task activities will be used to check the achievability of individual goals identified at the beginning of the project.







## 2.3 Research alignment based on each use case and partner activities

|             | Table 1: TSSG, research alignment summary                       |                 |                            |                                                                                                                                                |                                |                            |              |             |                  |  |  |  |
|-------------|-----------------------------------------------------------------|-----------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|--------------|-------------|------------------|--|--|--|
|             |                                                                 |                 |                            |                                                                                                                                                | Timeline to<br>finish task     |                            |              |             |                  |  |  |  |
| Use<br>case | Requirement                                                     | Work<br>package | Task<br>activity<br>number | Task activities                                                                                                                                | Relate<br>d<br>deliver<br>able | StartiCompngletiontimetime |              | Status      | Demonstrat<br>or |  |  |  |
|             | To identify<br>issues and<br>challenges for<br>THz MAC<br>layer | WP-5            | T-5.2                      | Literature review for exiting<br>Terahertz communication<br>protocols                                                                          | D-5.3                          | M12                        | M-14         | In-progress | Simulation       |  |  |  |
|             |                                                                 | WP-5            | T-5.2                      | Analyses and selection of<br>existing simulators for<br>Terahertz communications                                                               | D-5.3                          | M-08                       | M-13         | Completed   | Simulation       |  |  |  |
|             | Initial Data                                                    | WP-5            | T-5.2                      | Initial Data Link Layer Block<br>Diagram                                                                                                       | D-5.3                          | M-08                       | M-13         | Completed   |                  |  |  |  |
| UC-<br>01   | Link Layer<br>simulator                                         | WP-5            | T-5.2                      | Physical layer parameters<br>analyses to be used in the link<br>layer simulator                                                                | D-5.3                          | M-08                       | <b>M-</b> 14 | In-progress | Simulation       |  |  |  |
|             |                                                                 | WP-5            | T-5.2                      | Implementation/simulation of<br>DLL basic functionalities on<br>MATLAB                                                                         | D-5.3                          | M-10                       | M-15         | In-progress | Simulation       |  |  |  |
|             | Traffic<br>modelling and<br>work load                           | WP-5            | T-5.2                      | Theoretical Frame generation<br>and DLL buffer modelling<br>using Markov Chain                                                                 | D-5.3                          | M-12                       | M-15         | In-progress | Simulation       |  |  |  |
|             | estimation of<br>Data Centres                                   | WP-5            | T-5.2                      | Capturing real traces from<br>Data Centre environment and<br>equivalent traffic generation                                                     | D-5.3                          | <b>M-10</b>                | M-24         | In-progress | Simulation       |  |  |  |
|             | Initial Data<br>Link Layer<br>simulator                         | WP-5            | T-5.2                      | Implementation of Point to<br>point link within a Data<br>Centre scenario using<br>directional antennas                                        | D-5.3                          | M-15                       | M-18         | Not started | Simulation       |  |  |  |
|             |                                                                 | WP-5            | T-5.2                      | Implementation of channel<br>model and physical layer<br>aspects                                                                               | D-5.3                          | M-15                       | M-26         | Not started | Simulation       |  |  |  |
|             |                                                                 | WP-5            | T-5.2                      | Interfacing between Physical,<br>MAC and Network Layers                                                                                        | D-5.3                          | M-15                       | M-26         | Not started | Simulation       |  |  |  |
| UC-<br>2A   | DC Geometry                                                     | WP-5            | T-5.2                      | Simulations for wireless<br>topology design within a Data<br>Centre using inter/intra rack<br>communication                                    | D-5.3                          | M-18                       | M-20         | Not started | Simulation       |  |  |  |
|             | Handshaking mechanism                                           | WP-5            | T-5.2                      | Handshaking mechanism<br>proposed and implemented                                                                                              | D-5.3                          | M-20                       | M-24         | Not started | Simulation       |  |  |  |
|             |                                                                 |                 |                            | Simulations carried out for<br>maximum distance<br>achievability                                                                               |                                |                            |              | Not started | Simulation       |  |  |  |
|             | Data rate and<br>transmission<br>distance                       | WP-5            | T-5.2                      | Simulations performed to<br>analyse the achievable data<br>rate                                                                                | D-5.3                          | M-24                       | M-26         | Not started | Simulation       |  |  |  |
|             |                                                                 |                 |                            | Comparison of an optical and<br>THz link within a Data Centre<br>environment                                                                   |                                |                            |              | Not started | Simulation       |  |  |  |
| UC-<br>2B   | Final Data<br>Link layer<br>simulator                           | WP-5            | T-5.2                      | Point to multipoint scenario<br>implemented and simulated<br>for a Data Centre environment<br>within a simulator using<br>directional antennas | D-5.4                          | M-26                       | M-30         | Not started | Simulation       |  |  |  |
|             | DC Geometry                                                     | WP-5            | T-5.2                      | Extended simulations<br>performed for point to<br>multipoint scenario with<br>directional antennas                                             | D-5.4                          | M-28                       | M-30         | Not started | Simulation       |  |  |  |

Table 1: TSSG, research alignment summary



|          | Handshaking<br>mechanism                                   | WP-5 | T-5.2 | Advanced Handshaking<br>mechanism proposed and<br>implemented with directional<br>antennas                                         | D-5.4   | M-30 | M-33 | Not started | Simulation |
|----------|------------------------------------------------------------|------|-------|------------------------------------------------------------------------------------------------------------------------------------|---------|------|------|-------------|------------|
|          | Autonomous                                                 |      |       | Advanced algorithms for<br>device discovery                                                                                        | D-5.4 I |      |      | Not started | Simulation |
|          | algorithms for discovery,                                  | WP-5 | T-5.2 | Advanced algorithm for<br>handshaking                                                                                              |         | M-33 | M-36 | Not started | Simulation |
| UC<br>03 | synchronizatio<br>n and<br>configuration                   | W1-5 | 1-5.2 | Advanced algorithms for<br>synchronization, antenna<br>alignment and link<br>configuration                                         |         |      |      | Not started | Simulation |
|          | Autonomous<br>algorithms<br>using dynamic<br>traffic loads | WP-5 | T-5.2 | Simulation of different traffic<br>loads to analyse the<br>performance and achievable<br>data rate with transmission<br>distances. | D-5.4   | M-35 | M-36 | Not started | Simulation |



|             |                                                                  |                 |                                               | ble 2: DER, research a                                                                                                                                                                                                                                                                                                                                                                                           | g                          | T                | <u>,</u><br>to finish task |                                |                                                       |
|-------------|------------------------------------------------------------------|-----------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|----------------------------|--------------------------------|-------------------------------------------------------|
| Use<br>case | Requirement                                                      | Work<br>package | Task<br>activity<br>number                    | Task activities                                                                                                                                                                                                                                                                                                                                                                                                  | Related<br>deliv<br>erable | Starting<br>time | Completion<br>time         | Current<br>status              | Demonstrator                                          |
|             | End-user<br>requirements                                         |                 | Stakeholder/end-user<br>interviews & workshop | Define use case scenarios<br>Stakeholder/end-user<br>interviews & workshops<br>Business Model Canvas                                                                                                                                                                                                                                                                                                             | D2.1                       |                  |                            | Completed                      | DC integration                                        |
| UC-<br>01   | Technology<br>Requirements<br>Non-<br>functional                 | WP2             | T2.1                                          | Examine commercial<br>opportunities for THz/DC<br>integration                                                                                                                                                                                                                                                                                                                                                    | D2.2                       | M1               | M36                        | On-going<br>or in-<br>progress | Bench top<br>End-to-end<br>simulator                  |
|             | Requirements                                                     |                 |                                               | Identify potential safety<br>risks and<br>customer/market risks                                                                                                                                                                                                                                                                                                                                                  | D2.3                       |                  |                            | Not<br>Started                 |                                                       |
|             | End-user<br>requirements                                         |                 |                                               | Define use case scenarios<br>Stakeholder/end-user<br>interviews & workshops                                                                                                                                                                                                                                                                                                                                      | D2.1                       |                  |                            | Completed                      |                                                       |
|             | Technology<br>Requirements<br>Non-                               | WP2             | T2.1                                          | Business Model Canvas<br>Examine commercial<br>opportunities for THz/DC<br>integration                                                                                                                                                                                                                                                                                                                           | D2.2                       | M1               | M36                        | On-going<br>or in-<br>progress | DC integration<br>Benchtop<br>End-to-end<br>simulator |
|             | functional<br>Requirements                                       |                 |                                               | Identify potential safety<br>risks and<br>customer/market risks                                                                                                                                                                                                                                                                                                                                                  | D2.3                       |                  |                            | Not<br>Started                 |                                                       |
| UC-<br>2A   | Interface<br>requirements                                        | WP5 T5.3        |                                               | Embedding THz links<br>into a comms network -<br>DER data center<br>Study and develop<br>flexible models to<br>support multiple different<br>network simulation<br>scenarios within the data<br>center<br>Design of Layer 3 routing<br>algorithms/protocols and<br>other (anycast/multicast)<br>• The trial network<br>simulator mapping traffic<br>and THz communication<br>across links within a<br>datacentre | D5.3                       |                  |                            |                                |                                                       |
|             |                                                                  |                 | T5.3                                          |                                                                                                                                                                                                                                                                                                                                                                                                                  | D5.4                       | М7               | M36                        | On-going<br>or in-<br>progress | End-to-end<br>Simulator                               |
|             | End-user                                                         |                 |                                               | Define use case scenarios<br>Stakeholder/end-user<br>interviews & workshops                                                                                                                                                                                                                                                                                                                                      | D2.1                       |                  |                            | Completed                      |                                                       |
|             | requirements<br>Technology<br>Requirements<br>Non-<br>functional | WP2             | T2.1                                          | Business Model Canvas<br>Examine commercial<br>opportunities for THz/DC<br>integration                                                                                                                                                                                                                                                                                                                           | D2.2                       | M1               | M36                        | On-going<br>or in-<br>progress | DC integration<br>Benchtop<br>End-to-end<br>simulator |
| UC-<br>2B   | Requirements                                                     |                 |                                               | Identify potential safety<br>risks and<br>customer/market risks                                                                                                                                                                                                                                                                                                                                                  | D2.3                       |                  |                            | Not<br>Started                 |                                                       |
|             | Interface<br>requirements                                        | W/D <i>5</i>    | T5 2                                          | Further design of routing<br>protocols, simulation<br>scenarios etc.<br>Partitioning of data traffic                                                                                                                                                                                                                                                                                                             | D5.3                       | M7               | M36                        | On-going<br>or in-             | End-to-end                                            |
|             |                                                                  | WP5 T5.3        |                                               | and software-defined<br>networking (SDN)<br>integration                                                                                                                                                                                                                                                                                                                                                          | D5.4                       | 1/1 /            | 14120                      | progress                       | Simulator                                             |

Table 2: DER, research alignment summary



| UC<br>03 | Requirements                             | WP2 | T2.1 | Define use case scenarios<br>Stakeholder/end-user<br>interviews & workshops<br>Business Model Canvas<br>Examine commercial<br>opportunities for THz/DC<br>integration<br>Identify potential safety<br>risks and<br>customer/market risks | D2.1<br>D2.2<br>D2.3 | M1 | M36 | Completed<br>On-going<br>or in-<br>progress<br>Not<br>Started | DC integration<br>Benchtop<br>End-to-end<br>simulator |
|----------|------------------------------------------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----|-----|---------------------------------------------------------------|-------------------------------------------------------|
|          | Demonstration<br>or proof-of-<br>concept | WP6 | T6.3 | Fully demonstrate THz<br>links in a data center<br>environment through<br>real-time device/link<br>integration and through<br>simulators                                                                                                 | D6.3<br>D6.4         | M4 | M36 | On-going<br>or in-<br>progress                                | DC integration                                        |



|             |                                              |                 | 1 ai                       | ble 3: TUBS, research alig                                                                                                                                                                                                                      |                            | č                | to finish the      |                 |                                                        |
|-------------|----------------------------------------------|-----------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|--------------------|-----------------|--------------------------------------------------------|
|             |                                              |                 |                            |                                                                                                                                                                                                                                                 |                            |                  | task               |                 |                                                        |
| Use<br>case | Requirement                                  | Work<br>package | Task<br>activity<br>number | Task activities                                                                                                                                                                                                                                 | Related<br>deliv<br>erable | Starting<br>time | Completion<br>time | Status          | Demonstrator                                           |
| UC-<br>01   | Sustainability<br>Technology<br>requirements | WP7             | T7.4                       | Standardization activities to<br>strengthen the Data Centre<br>Scenario as an application for<br>the THz technology                                                                                                                             | D7.5<br>D7.6<br>D7.7       | M1               | M36                | In-<br>progress | DC integration<br>Benchtop<br>End to end<br>simulation |
|             |                                              |                 |                            | Channel measurement for<br>Channel<br>Characterization of Use Case<br>Scenarios                                                                                                                                                                 | D4.3                       | M1               | M10                | Completed       | End to end<br>Simulator                                |
|             | Data Centre<br>geometry                      | WP4             | T4.2.1                     | Study of channel<br>characteristics for different<br>transmission scenarios<br>(General Characterization,<br>Top of Rack, Intra-Rack) in<br>the data center                                                                                     | D4.4                       | M10              | M20                | In-<br>progress | End to end<br>Simulator                                |
|             | Network<br>Requirements                      |                 |                            | Bild a 3D data center model<br>for ray tracing channel<br>simulations                                                                                                                                                                           | D4.4                       | M10              | M22                | Not<br>started  | End to end<br>Simulator                                |
|             |                                              |                 | T4.2.2                     | Extensive ray tracing<br>simulations to fully<br>characterize the channel                                                                                                                                                                       | D4.4                       | M22              | M28                | Not<br>started  | End to end<br>Simulator                                |
| UC-<br>2A   |                                              |                 |                            | Creation of a model of the<br>THz channel which will be<br>fed to the PHY simulator                                                                                                                                                             | D4.4                       | M26              | M30                | Not<br>started  | End to end<br>Simulator                                |
| 24          | Data Rate of<br>THz links<br>Bit Error Rate  | WP5             |                            | First simple physical layer<br>simulator implementing<br>the current standard of THz<br>communication which gives<br>BER and PHY delay for the<br>measured scenarios using a<br>simple channel model                                            | D5.1                       | M1               | M15                | In-<br>progress | End to end<br>Simulator                                |
|             |                                              |                 | P5 T5.1                    | Implementation of the THz<br>Channel model in the PHY<br>simulator                                                                                                                                                                              | D5.2                       | M15              | M33                | Not<br>started  | End to end<br>Simulator                                |
|             |                                              |                 |                            | Implementation of forward<br>error correction methods in<br>the<br>PHY simulator                                                                                                                                                                | D5.2                       | M15              | M27                | Not<br>started  | End to end<br>Simulator                                |
|             |                                              |                 |                            | Analysis of Bit Errors in the<br>PHY simulator and<br>Development of a Statistical<br>Error Model                                                                                                                                               | D.5.2                      | M15              | M33                | Not<br>started  | Benchtop<br>End to end<br>Simulator                    |
|             |                                              |                 |                            | Definition of interfaces<br>between simulators                                                                                                                                                                                                  | D5.1                       | M1               | M6                 | Completed       | End to end<br>Simulator                                |
| UC-<br>2B   | Interface<br>requirements                    | WP5             | WP5 T5.1                   | Development of an Error<br>Model Generator which<br>enables higher-level<br>simulations employing a<br>realistic PHY model                                                                                                                      | D5.2                       | M20              | M34                | Not<br>started  | End to end<br>Simulator                                |
| UC-<br>03   | Demonstration<br>or proof-of-<br>concept     | WP6             | T6.2                       | Development of a simulator<br>platform/interface which<br>serves as a demonstration<br>platform and illustrates how<br>all different simulators work<br>together (DC Geometry,<br>Raytracing, PHY Sim, MAC<br>Sim, Network Sim, Auto<br>Config) | D6.3<br>D6.4               | M1               | M36                | In-<br>progress | End to end<br>Simulator                                |



|                                 | Table 4: INESC TECH, research alignment summary         Timeline to finish task                    |                 |                            |                                                                                                                                                                                              |                        |                  |                    |                                |                                                       |
|---------------------------------|----------------------------------------------------------------------------------------------------|-----------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|--------------------|--------------------------------|-------------------------------------------------------|
| Use<br>case                     | Requirement                                                                                        | Work<br>package | Task<br>activity<br>number | Task activities                                                                                                                                                                              | Related<br>deliverable | Starting<br>time | Completion<br>time | Current<br>status              | Demonstrator                                          |
|                                 | Technology<br>requirement:                                                                         | WP 3            | T 3.5                      | Propose and<br>validate by<br>simulation a<br>substrate<br>integrated antenna<br>design solution<br>compatible with<br>existing<br>manufacturing<br>limitations.                             | D3.4                   | M1               | M12                | Completed                      | Benchtop<br>End to end<br>Simulator                   |
|                                 | device<br>antenna gain<br>higher than<br>20 dBi for 1<br>m<br>transmission                         | WP 3            | Т 3.5                      | Improve initial<br>substrate<br>integrated antenna<br>design solution<br>with antenna feed<br>details.                                                                                       | D3.6                   | M13              | M14                | On-going<br>or in-<br>progress | Benchtop<br>End to end<br>Simulator                   |
| UC-<br>02A<br>and<br>UC-<br>02B | (adjacent<br>racks).                                                                               | WP 3            | Т 3.5                      | Propose and<br>validate by<br>simulation a<br>waveguide-based<br>solution to<br>interface with the<br>substrate<br>integrated antenna<br>array to provide<br>the target gain.                | D3.6                   | M15              | M20                | Not<br>started                 | Benchtop<br>End to end<br>Simulator                   |
|                                 | Technology<br>requirement:<br>device<br>antenna gain<br>higher than                                | WP3             | Т 3.5                      | Improve initial<br>waveguide-based<br>interface to<br>substrate<br>integrated antenna<br>array to provide<br>the target gain.                                                                | D3.7                   | M21              | M30                | Not<br>started                 | DC integration<br>Benchtop<br>End to end<br>simulator |
|                                 | 30 dBi for<br>10m<br>transmission<br>(adjacent<br>aisles).                                         | WP3             | Т 3.5                      | Propose and<br>validate by<br>simulation a horn<br>antenna solution to<br>be interfaced with<br>the SBD receiver.                                                                            | D3.6 /D 3.7            | M13              | M16                | On-going<br>or in-<br>progress | DC integration<br>Benchtop<br>End to end<br>simulator |
| UC                              | Technology<br>requirement:<br>device<br>antenna<br>compatible<br>with<br>beamforming<br>subsystem. | WP3             | Т 3.5                      | Simulate antenna<br>array radiation<br>patterns resulting<br>from array<br>excitations with<br>phase values given<br>by the developed<br>PIC, considering a<br>Si lens.                      | D3.6 / D3.7            | M13              | M16                | Not<br>started                 | Bench top<br>End to end<br>Simulator                  |
| UC-<br>03                       |                                                                                                    | WP3             | T 3.5                      | Simulate antenna<br>array radiation<br>patterns resulting<br>from array<br>excitations with<br>phase values given<br>by the developed<br>PIC, considering<br>an antenna<br>waveguide output. | D3.6 / D3.7            | M17              | M24                | Not<br>started                 | Bench top<br>End to end<br>Simulator                  |

 Table 4: INESC TECH, research alignment summary



|             |                                                             |                 |                            |                                                                                                                                                                                                |                        | Timeline         | to finish task     |                   |                         |
|-------------|-------------------------------------------------------------|-----------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|--------------------|-------------------|-------------------------|
| Use<br>case | Requirement                                                 | Work<br>package | Task<br>activity<br>number | Task activities                                                                                                                                                                                | Related<br>deliverable | Starting<br>time | Completion<br>time | Current<br>status | Demonstrator            |
|             | Beam<br>steering<br>mechanism                               |                 |                            | Design a phase<br>distribution<br>Photonic Integrated<br>Circuit for dynamic<br>reconfiguration of<br>the emission profile.<br>The PIC design has<br>been fabricated.                          | D3.3                   | M1               | M24                | Completed         | Simulations<br>Benchtop |
| UC-<br>03   | for dynamic<br>allocation of<br>devices and<br>of bandwidth | WP3             | Task<br>3.4                | Test and<br>characterization of<br>the Phase<br>Distribution PIC.<br>Test building blocks<br>and their effect on<br>the system. Test<br>system and the<br>range of tuning for<br>each element. | D3.5                   | M8               | M24                | On Going          | Benchtop                |

#### Table 5: VLC, research alignment summary

| Table 6: NPL, research alignment summary |
|------------------------------------------|
|------------------------------------------|

|             |                                         |                 |                            |                                                                                  | 0                      | Timeline         | to finish task     |                |              |
|-------------|-----------------------------------------|-----------------|----------------------------|----------------------------------------------------------------------------------|------------------------|------------------|--------------------|----------------|--------------|
| Use<br>case | Requirement                             | Work<br>package | Task<br>activity<br>number | Task activities                                                                  | Related<br>deliverable | Starting<br>time | Completion<br>time | Status         | Demonstrator |
| UC-<br>01   |                                         |                 |                            |                                                                                  |                        |                  |                    |                |              |
|             |                                         |                 |                            | Measure emitted<br>power of<br>transmitters                                      |                        | M1               | M12                | Completed      | Benchtop     |
|             |                                         |                 |                            | Measure the power<br>spectrum of the<br>transmitter                              |                        | M1               | M12                | Completed      | Benchtop     |
|             |                                         |                 |                            | Measure<br>responsivity of<br>receivers                                          | D4.1                   | M1               | M12                | Completed      | Benchtop     |
|             | Physical Layer<br>TERAPOD               | W/D 4           | WP-4 T4.1                  | Measure radiation<br>pattern and<br>polarisation in the<br>far field             |                        | M1               | M12                | Completed      | Benchtop     |
| UC-<br>02A  | components<br>Testing and<br>validation | WI -4           |                            | Measure emitted<br>power of<br>transmitters                                      |                        | M13              | M33                | Not<br>started | Benchtop     |
| 02A         |                                         |                 |                            | Measure the power<br>spectrum of the<br>transmitter                              |                        | M13              | M33                | Not<br>started | Benchtop     |
|             |                                         |                 |                            | Measure<br>responsivity of<br>receivers                                          | D4.2                   | M13              | M33                | Not<br>started | Benchtop     |
|             |                                         |                 |                            | Measure radiation<br>pattern and<br>polarisation in the<br>far field             |                        | M13              | M33                | Not<br>started | Benchtop     |
|             | Environmental conditions                | WP-4            | T4.2.1                     | Channel<br>measurements in<br>real(istic) ambient<br>conditions using<br>mock-up | D4.4                   | M12              | M24                | Not<br>started | Benchtop     |



|            |                                                                    |        |        | environment at<br>NPL for systematic<br>channel<br>measurements and<br>demo purposes                                                                                     |      |     |     |                |          |
|------------|--------------------------------------------------------------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|----------------|----------|
| UC-<br>02B |                                                                    |        |        |                                                                                                                                                                          |      |     |     |                |          |
|            |                                                                    |        |        | Measure emitted<br>power of<br>transmitters                                                                                                                              |      | M1  | M12 | Completed      | Benchtop |
|            |                                                                    |        |        | Measure the power<br>spectrum of the<br>transmitter                                                                                                                      |      | M1  | M12 | Completed      | Benchtop |
|            | Physical Layer<br>- THz                                            |        |        | Measure<br>responsivity of<br>receivers                                                                                                                                  | D4.1 | M1  | M12 | Completed      | Benchtop |
|            | - THZ<br>transceivers<br>which support<br>beam-steering<br>TERAPOD | WP-4   | T4.1   | Measure radiation<br>pattern and<br>polarisation in the<br>far field                                                                                                     |      | M1  | M12 | Completed      | Benchtop |
|            | components -<br>Beamforming<br>sub-system                          | VVI -4 | 14.1   | Measure emitted<br>power of<br>transmitters                                                                                                                              | D4.2 | M13 | M33 | Not<br>started | Benchtop |
| UC-<br>03  | Testing and<br>validation                                          |        |        | Measure the power<br>spectrum of the<br>transmitter                                                                                                                      |      | M13 | M33 | Not<br>started | Benchtop |
|            |                                                                    |        |        | Measure<br>responsivity of<br>receivers                                                                                                                                  |      | M13 | M33 | Not<br>started | Benchtop |
|            |                                                                    |        |        | Measure radiation<br>pattern and<br>polarisation in the<br>far field                                                                                                     |      | M13 | M33 | Not<br>started | Benchtop |
|            | Environmental<br>conditions                                        | WP-4   | T4.2.1 | Channel<br>measurements in<br>real(istic) ambient<br>conditions using<br>mock-up<br>environment at<br>NPL for systematic<br>channel<br>measurements and<br>demo purposes | D4.4 | M12 | M24 | Not<br>started | Benchtop |

\_\_\_\_\_



|             |             |                 | 1                                                                                                                                                                                                                             | e 7: UGLA, researci                                                                                                                                                                                                                                                 |                        |                  | y<br>to finish task |                                |                                 |
|-------------|-------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|---------------------|--------------------------------|---------------------------------|
| Use<br>case | Requirement | Work<br>package | Task<br>activity<br>number                                                                                                                                                                                                    | Task activities                                                                                                                                                                                                                                                     | Related<br>deliverable | Starting<br>time | Completion<br>time  | Status                         | Demonstrator                    |
| UC-<br>01   |             |                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     |                        |                  |                     |                                |                                 |
|             |             |                 |                                                                                                                                                                                                                               | Realisation of 150<br>GHz RTD in chip<br>form with adequate<br>output power (0.5 – 1<br>mW) and tunability<br>(a few GHz) for use<br>as local oscillators in<br>coherent Schottky<br>Barrier Diode (SBD)<br>based THz receivers<br>being developed<br>partner ACST. | T-4.3 and<br>T-3.5     | M-1              | M-15                | In-<br>progress                | Bench top and<br>DC integration |
| UC-<br>2A   |             | T-3.2           | Realisation of 300<br>GHz RTD sources<br>with on-chip<br>antennas and their<br>packaging (for use<br>with a silicon lens,<br>which is a classical<br>approach that is<br>employed for some<br>other semiconductor<br>sources) | T-4.3 and<br>T-3.5                                                                                                                                                                                                                                                  | M-1                    | M-20             | In-<br>progress     | Benchtop and<br>DC integration |                                 |
|             |             |                 | Realisation of 300<br>GHz RTD sources in<br>substrate-in-<br>waveguide (SIW)<br>technology (as an<br>alternative approach<br>which employs<br>proven high gain<br>waveguide horn<br>antennas)                                 | T-4.3 and<br>T-3.5                                                                                                                                                                                                                                                  | M-1                    | M-24             | In-<br>progress     | Benchtop and<br>DC integration |                                 |
|             |             |                 |                                                                                                                                                                                                                               | Realisation of high<br>power (>3 dBm) 300<br>GHz sources and<br>their packaging as<br>noted above                                                                                                                                                                   | T-4.3 and<br>T-3.5     | M-1              | M-30                | In-<br>progress                | Benchtop and DC integration     |

#### Table 7: UGLA, research alignment summary



|             |                                                        |                 | Table                      | 8: ACST, researd                                                                                                                                                                              |                        |                  | <u>y</u><br>to finish task |                                      |                                               |
|-------------|--------------------------------------------------------|-----------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|----------------------------|--------------------------------------|-----------------------------------------------|
| Use<br>case | Requirement                                            | Work<br>package | Task<br>activity<br>number | Task activities                                                                                                                                                                               | Related<br>deliverable | Starting<br>time | Completion<br>time         | Current<br>status                    | Demonstrator                                  |
| UC-<br>01   | Requirements,<br>challenges<br>and technical<br>inputs | WP2             | T2.1                       | Provide support in<br>the definition of<br>technological<br>aspects and<br>technologies<br>compatibility.<br>Identify<br>technological<br>requirements for<br>the THz<br>TERAPOD<br>receiver. | D2.1                   | M1               | M6                         | Completed                            |                                               |
|             |                                                        |                 | Т3.3                       | Provide SBD<br>quasi-optical<br>detectors able to<br>work from 0.05-<br>2.5 THz                                                                                                               | D3.1                   | M1               | М3                         | Completed                            | DC<br>integration,<br>Benchtop                |
| UC-<br>2A   |                                                        | WP3             | T3.3                       | Development of a<br>preliminary 300<br>GHz Frequency<br>mixer based on<br>SBD technology.                                                                                                     | D3.2                   | M1               | M13                        | Completed                            | DC<br>integration,<br>Benchtop,<br>simulation |
|             |                                                        |                 | T3.3                       | Development of<br>an SBD-based 150<br>GHz doubler to<br>provide local<br>oscillator power<br>for the 300 GHz<br>mixer.                                                                        | D3.6                   | M11              | M18                        | Designed<br>ready for<br>fabrication | Benchtop                                      |
|             |                                                        |                 | T3.3                       | Delivery of a 300<br>GHz receiver<br>System for<br>preliminary<br>demonstration of<br>use case in Data<br>Centre.                                                                             | D3.3                   | M11              | M18                        | On-going                             | DC<br>integration,<br>Benchtop,<br>simulation |
|             | Delivery of<br>SBD-based<br>THz receiver               | WP3             | T3.3                       | Development of a<br>300 GHz mixer<br>based on low<br>barrier SBDs to<br>reduce LO power<br>requirements                                                                                       | D3.7                   | M17              | M24                        | Not<br>started                       | DC<br>integration,<br>Benchtop,<br>simulation |
| UC-<br>2B   | at 300 GHz<br>able to<br>provide 100<br>Gbps           |                 | T3.5                       | Development of a<br>150 GHz<br>Oscillator using<br>RTDs and/or<br>UTCs                                                                                                                        | D3.6                   | M15              | M20                        | Not<br>started                       | DC<br>integration,<br>Benchtop,<br>simulation |
|             |                                                        |                 | T3.5                       | Mechanical design<br>of a 300 GHz horn<br>antenna in<br>collaboration with<br>INESC                                                                                                           | D3.6                   | M15              | M18                        | Not<br>started                       | Benchtop,<br>simulation                       |
|             |                                                        | WP4             | T4.1                       | Characterisation of<br>a preliminary SBD<br>300 GHz Mixer                                                                                                                                     | D4.2                   | M7               | M13                        | Completed                            | DC<br>integration,<br>Benchtop                |

#### Table 8: ACST, research alignment summary



|           |  |      | Characterisation of<br>SBD 300 GHz<br>Doubler                                                       | D4.2 | M16 | M18 | Not<br>started | Benchtop,<br>simulation                       |
|-----------|--|------|-----------------------------------------------------------------------------------------------------|------|-----|-----|----------------|-----------------------------------------------|
|           |  |      | Characterisation of<br>150 GHz<br>Oscillator based<br>on RTDs and/or<br>UTCs                        | D4.2 | M18 | M24 | Not<br>started | Benchtop                                      |
|           |  |      | Characterisation of<br>the Low barrier<br>SBD 300 GHz<br>mixer                                      | D4.2 | M20 | M24 | Not<br>started | Benchtop, simulation                          |
|           |  |      | Characterisation of<br>the preliminary<br>300 GHz receiver                                          | D4.3 | M16 | M18 | Not<br>started | DC<br>integration,<br>Benchtop,<br>simulation |
|           |  | T4.2 | Characterisation of<br>low barrier SBD-<br>based 300 GHz<br>Receiver using<br>RTD/UTC<br>oscillator | D4.4 | M20 | M24 | Not<br>started | DC<br>integration,<br>Benchtop,<br>simulation |
| UC-<br>03 |  |      |                                                                                                     |      |     |     |                |                                               |



17

### **3** Research Alignment with State of the Art

This section will provide an overview of where the activities within TERAPOD sit in relation to other activities being pursued within Europe and Internationally within the THz communication space.

There is a sharp increase in recent years in the research funding by the bodies like Horizon 2020 (H2020) of European Union and National Science Foundation (NSF) of the USA and NTT of Japan. This funding ranges from enhancing research on the device technology to communication aspects including channel, physical, MAC and Network layer characterization. The projects related to these aspects are mentioned in Table 2. Some of the projects are based on establishing the feasibility of communication windows within Terahertz Gap like Ultrawave [1], Dream [2], EPIC [3], and WORTECS [4]. Each project is looking at a specific scenario. For example, the TERAPOD project is aiming to design a communication methodology for a Data Centre environment, which involves potentially the channel, antenna, device and Physical layer considerations for an indoor environment only. The TERRANOVA [5] on the other hand focuses on the backhaul point to point scenario for outdoor long-range environment including small cells. Each scenario requires a different strategies to access the channel and communication establishment. Similarly, Thor [6], is also looking at high speed link up to 100 Gbps over 300 GHz band for backhaul with partial involvement of point to point scenario for MAC layer channel access.

The TERAPOD project is part of a Terahertz cluster, which includes projects focusing on different aspects and application areas within Terahertz communications domain. These projects are mainly funded for Networking beyond 5G and are working together to progress and share information among a wider audience and each other. Depending on the application area and requirements, each project has different requirements, aims, and objectives.

The projects under the Terahertz cluster platform are highlighted here with their deliverables, aims, and objective. There potential differences with TERAPOD deliverables and outputs are also discussed and highlighted here. The state of the art and Terahertz cluster projects are shown in Figure 2.




Figure 2: Terahertz cluster projects.



#### 3.1 Alignment of TERAPOD project with other projects

The sections will be aligned with the activities of TERPAOD and will depict similar activities within these groups, to show how TERAPOD is progressing in comparison to these activities. In Table 9, the overall focus of each project is mentioned and their relation to TERAPOD project is highlighted. Mainly, these projects focus on different application scenarios. Therefore, each one has a significant difference in requirements and objectives. Table 10 presents the comparison of functionalities, architectures, target KPIs, and requirements for TERAPOD and other cluster projects. The detailed technical requirements and outcomes for each project are mentioned in Table 11.

Each project is focused on a different application area, and therefore each one has different technical requirements and objectives. For example, Terranova, Ultrawave, and Thor are focussing on backhaul networks. They require channel and propagation model for outdoor environments. Whereas, TERAPOD focuses on indoor Data Centre networks with short-range communication up to 10 m. The indoor scenarios require different channel model and antenna design. Each project has different technical requirement mentioned in Table 9, 10 and 11. However, for simulator and physical layer combined models can be used for antenna and beam management with simulation platform which can capture Terahertz band features.



|                                                                                                                              |                         | Ignment of TERAPOD project with other                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project                                                                                                                      | Region                  | Focus                                                                                                                                                                                                                                                                                                              | Alignment to TERPAOD                                                                                                                                                                           |
| ULTRAWAVE                                                                                                                    | EU<br>H2020             | High capacity backhaul links to enable 5G cell<br>densification by exploiting bands beyond 100 GHz                                                                                                                                                                                                                 | High capacity point to point and multipoint<br>links within a Data Centre environment by<br>exploiting bands beyond 300 GHz                                                                    |
| TERRANOVA                                                                                                                    | EU<br>H2020             | System architecture for embedding broadband THz<br>wireless links into fiber optic links for beyond 5G<br>networks by exploiting 270 and 330 GHz band.<br>Mainly, focused on electro-optical baseband<br>interfaces, Integrated THz front-ends and correction<br>schemes for hybrid fiber optic and wireless links | A full system integration within a<br>Datacenter environment with wireless and<br>hybrid (optical and wireless) links by<br>focusing on RTDs, STDs, UTC-PDs, and<br>communication architecture |
| EPIC                                                                                                                         | EU<br>H2020             | Forward error correction codes and design                                                                                                                                                                                                                                                                          | FECs are also part of TERAPOD aims and objectives                                                                                                                                              |
| DREAM                                                                                                                        | EU<br>H2020             | Exploiting radio spectrum bands like 130-174.8<br>GHz with beam steering functionality to reach<br>optical systems speed                                                                                                                                                                                           | Exploiting radio spectrum beyond 300 GHz<br>to provide higher data rates for a Data<br>Centre environment.                                                                                     |
| WORTECS                                                                                                                      | EU<br>H2020             | Optical wireless communication and radio over 90<br>GHz Proof of Concept with Gbps throughput.                                                                                                                                                                                                                     | One of the use cases in TERAPOD is also<br>focusing on optical wireless integration<br>within a Data Centre                                                                                    |
| NTT & Tokyo Uni.                                                                                                             | JAPAN                   | IC capable of 100Gbps at 300GHz. Target source is<br>InP-HEMT. Single carrier.                                                                                                                                                                                                                                     | TERAPOD is focusing on RTD and UTC-<br>PD technologies, also at 300GHz and<br>100Gbps.                                                                                                         |
| TERANOVA: A testbed<br>for Terahertz<br>communication                                                                        | US, Buffalo<br>NSF.     | Developing a fully integrated THz communication testbed targeting 1THz.                                                                                                                                                                                                                                            | TERAPOD demonstrators are focusing on<br>300 GHz and will be fully integrated into a<br>DC deployment. I.e. not a testbed.                                                                     |
| Hybrid<br>Graphene/Semiconductor<br>Plasmonic Nano-<br>Transceiver and Nano-<br>Antenna for Terahertz-<br>Band Communication | US, Buffalo<br>US AFOSR | Development of a Plasmonic THz source coupled<br>with a graphene antenna. This is a fundamentally<br>new approach to THz generation.                                                                                                                                                                               | TERAPOD focuses on RTD and UTC-PD with aims of advancing TRL.                                                                                                                                  |

Table 9: Alignment of TERAPOD project with other projects.



| Project   | Scenarios                                                                    | Bands                                                     | Distance/<br>Coverage                        | Features/<br>connectivity                 | Data rate                                                                   | Laten<br>cy | Mobili<br>ty | Antenna                             | anten<br>na<br>gain         | Chann<br>el/Pro<br>pagati<br>on<br>model | Device<br>s                  | Physi<br>cal<br>layer | MAC<br>layer | Netw<br>ork<br>layer |
|-----------|------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|-------------|--------------|-------------------------------------|-----------------------------|------------------------------------------|------------------------------|-----------------------|--------------|----------------------|
| TERRANOVA | Backhaul                                                                     | 270 to 320 GHz                                            | 1 Km                                         | Optical and<br>wireless,<br>Small cells   | 100 Gbps                                                                    | Yes         | Yes          | Phased<br>array/Ho<br>rn<br>antenna | 55 dBi<br>is<br>assum<br>ed | Yes                                      | Х                            | Yes                   | Yes          | Х                    |
| IBROW [7] | Femtocell,<br>Wireless portable<br>devices                                   | 60 GHz - 1 THz                                            | 10 m                                         | Wireless<br>transceiver<br>design         | 10 Gbps                                                                     | Х           | X            | Х                                   | Х                           | Х                                        | RTDs                         | х                     | Х            | Х                    |
| ULTRAWAVE | Backhaul                                                                     | 141-148.5 GHz<br>(Backhaul)<br>275-305 GHz<br>(Fronthaul) | Fronthaul:<br>600-700m<br>Backhaul:<br>600 m | P2P<br>(fronthaul),<br>P2MP<br>(Backhaul) | 100 Gbps                                                                    | Yes         | Х            | sector/te<br>rminal                 | 20 and<br>39 dBi            | Х                                        | Х                            | Yes                   | Х            | Х                    |
| EPIC      | Indoor and<br>outdoor, short,<br>medium and long-<br>range chipset<br>design | Х                                                         | Х                                            | FEC<br>Techniques                         | 1 Tbps                                                                      | Х           | х            | Х                                   | Х                           | Х                                        | CMOS                         | х                     | Х            | х                    |
| DREAM     | Backhaul/ Mesh<br>network                                                    | D-band                                                    | 300 m                                        | P2P                                       | 100 Gbps                                                                    | Х           | Х            | Х                                   | Х                           | Х                                        | Х                            | Х                     | Х            | Х                    |
| WORTECS   | Virtual reality<br>Office<br>Stadium and<br>Theme park                       | 90 GHz                                                    | 10 m                                         | P2P                                       | VR (210 Gbps)<br>Office (25 Mbps<br>to 1 Gbps)<br>Stadium (20 - 50<br>Mbps) | Yes         | Yes          | Х                                   | X                           | Х                                        | х                            | X                     | Х            | Х                    |
| THOR      | Backhaul                                                                     | 252-325 GHz                                               | 1 Km                                         | P2P, P2MP                                 | 100 Gbps                                                                    | Х           | Х            | Х                                   | Х                           | Х                                        | Х                            | Yes                   | Х            | Х                    |
| NTT       | Wireless<br>downloading<br>system                                            | 300 GHz                                                   | 10 m                                         | P2P                                       | 20 Gbps                                                                     | Х           | Х            | Х                                   | Х                           | Х                                        | Х                            | х                     | Х            | х                    |
| TERAPOD   | Data centers                                                                 | 300 GHz                                                   | 10 m                                         | P2P, P2MP,<br>Autonomous<br>connectivity  | 100 Gbps                                                                    | Yes         | Х            | Horn                                | 24 dBi                      | Yes                                      | RTDs,<br>SBDs,<br>UTC<br>PDs | Yes                   | Yes          | Yes                  |

 Table 10: Terahertz cluster projects functionalities, KPIs and requirements.



| Project              | Scenarios                                                                                                                                        | Technical requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Description of outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project<br>TERRANOVA | Scenarios           1. Outdoor fixed P2P           2. Outdoor/Indoor           P2MP           3. Indoor/Outdoor           Quasi Omni-directional | Scenario 1 requirements:         Link type: LOS, FD, symmetric         Expected throughput: 200 Gb - 1 Tbps         Frequency: 220 -300 GHz         Optical channel: SSMF         Optical transceiver: XFP, CFP2-Aco         Optical modulation: Single carrier PDM, QAM, NxNRZ         THz Modulation: Single carrier (PDM, QAM), multicarrier (OFDM),         PAM4         THz Bandwidth: 40 GHz, 80 GHz         THz antenna: two polarizations         Beamforming: High gain, small angel         Scenario 2: requirements:         Multiple channel acces: space and time division mulitple access         UP and DL throughput: 500 Gbps         THz bandwidth: 40 GHz         THz antenna: 2 polarization         Beamforming type: High gain space div multiplexing         Beam steering: Large angle         Synchronization: required         UE discovery: fast and accurate with low discovery overhead         Scenario 3: Indoor Omnidirectional         NLOS, half duplex, TDMA         Throughput: 400 Gbps, 256 QAM single carrier | PHY layer functionalities         • Characteristics of THz band         • Pencil beamforming         • Modulation and coding         • Multiple frequency window Tx         • Multiple transmission         MAC/RRM functionalities         • Directed THz channel         • Heterogeneity of spectrum and deployment         • Control channels         • UE detection and tracking         • Interference management         • Multiple access channel         • Caching         • Handovers         Front end components         • 60 GHz & E band front end chipset and key parameters         • First generation THz frontend prototype         • The phased array         • Baseband up/down conversion         Optical link and THz media converter design, Optical transceiver         RF frontend and antenna prototypes, Baseband digital signal processing         Phased array beamforming, Beamforming implementation issues         Phased array antenna caliberation techniques |
|                      |                                                                                                                                                  | THz bandwidth: 40 GHz<br>THz antenna: 2 polarization<br>Beamforming type: High gain space div multiplexing<br>Beam steering: Large angle<br>Synchronization: required<br>UE discovery: fast and accurate with low discovery overhead<br><b>Scenario 3:</b> Indoor Omnidirectional<br>NLOS, half duplex, TDMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Front end components</li> <li>60 GHz &amp; E band front end chipset and key parameters</li> <li>First generation THz frontend prototype</li> <li>The phased array</li> <li>Baseband up/down conversion</li> <li>Optical link and THz media converter design, Optical transceiver</li> <li>RF frontend and antenna prototypes, Baseband digital signal processing</li> <li>Phased array beamforming, Beamforming implementation issues</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |                                                                                                                                                  | Bandwidth: 80 GHz<br>Antennas: M antennas<br>Link performance requirements:<br>Aggregated throughput - Tbps<br>P2P throughput Wireless/optical - Tbps<br>Link latency - 0 ms<br>Range - km<br>Reliability - target BER PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Channel measurements:<br>THz band Channel LOS, 200 to 400/450 GHz channel model, Transmission<br>windows, Channel measurements for different materials and losses in<br>environments, Measurements for indoor/outdoor environments, for noise,<br>scattering, reflections, and noise fading, Ray tracing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

 Table 11: Terahertz cluster project scenarios, technical requirements and outcomes.



| ULTRAWAVE | Point to point<br>Point to multipoint | G-BAND Fronthaul:<br>Link budget analysis with modulation schemes<br>high order modulation scheme 64 and 16 QAM<br>802.11ad QPSK<br>Range: 600-700 m<br>Cell size for backhaul: 50-200 m<br>Cell capacity: 500 m<br>Bandwidth 30 GHz<br>Frequency: 275-305 GHz<br>Throughput 30Gbps<br>Transmit power, IW<br>Antenna gain: 39 dBi<br>channel size: 440,880,1760 MHz<br>Modulation QPSK, BPSK<br>antenna: sector antenna 20 dBi<br>G-BAND Backhaul:<br>Frequency: 141-148.5 GHz<br>Block allocation: 8 GHz<br>effective throughput: 5.3 Gbps<br>Range: 600-650 m<br>Tx power: 4 W<br>antenna gain: 21 dB 30 degree<br>Modulation: qpsk, bpsk<br>terminal/sector antenna 36 dBi | Scenario definition<br>system specification for fronthaul<br>system specification for a backhaul<br>D-band and G- band for fronthaul and backhaul communication<br>Demonstration of fronthaul and backhaul communications<br>MMIC chipset specification<br>G-band photonics transmitter specification                                                                                                                                                                          |
|-----------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPIC      |                                       | Different for each application area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | This report determines the FEC performance requirement set for the EPIC project and wireless Tb/s use-cases in general. This report sets the performance targets for the FEC development work in the rest of the project. This report will present the differently proposed refinements and optimizations related to the architectural templates for the Turbo, LDPC, and Polar codes.                                                                                         |
| DREAM     | Confidential                          | Confidential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>System architecture and design</li> <li>D-band radio front end stage design, D-band transceiver, D-band frequency synthesis test</li> <li>Optimal antenna configuration,</li> <li>Optimised antenna array design with simulation and measurement results for final integration</li> <li>Test system for digital control of beam steering demonstrators.</li> <li>Prototype design and assembly</li> <li>Design of testbed architecture, spec. and planning</li> </ul> |



| WORTECS |                                                                     | Based on application throughput and latency requirements are<br>mentioned with the target density                                                                                                                                                                          | Not available                                                                                                                                                                                                                                                                           |
|---------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THOR    | Point to point<br>Point to multipoint                               | Not available                                                                                                                                                                                                                                                              | Not available                                                                                                                                                                                                                                                                           |
| TERAPOD | Point to point<br>Point to multipoint<br>Autonomous<br>connectivity | Throughput up to 100 Gbps<br>Latency: below 1 ms<br>Antenna gain: 24 dBi (substrate antenna)<br>BER: 10^-9<br>Channel/propagation model with ray tracing<br>RTDs, SBDs, UTC PDs,<br>Device packaging<br>300 GHz transmitter and receiver design<br>Communication protocols | <ul> <li>System and device technical and functional requirements</li> <li>Device design, antenna arrays</li> <li>Channel and propagation measurement</li> <li>Physical, Mac and Network layer protocols for proof of concept</li> <li>Demonstration of ideas and innovations</li> </ul> |



### 4 Conclusion/Further work

In this report, the requirement and task activities are highlighted for different use cases by each project partners. The aim is to align the research for each use case according to work package progress in terms of the requirement and deliverables. A methodology is presented to track the progress and align different tasks. The goal is then to track down the progress, match the deliverable and demonstrator with the identified requirements of each use case, and if required then to rectify them ahead of a time.



### **5** References

- [1] ULTRAWAVE, https://ultrawave2020.eu/, accessed: 09-01-2019.
- [2] DREAM, https://www.h2020-dream.eu/, accessed: 09-01-2019.
- [3] EPIC, https://epic-h2020.eu, accessed: 09-01-2019.
- [4] WORTECS, https://wortecs.cms.orange-labs.fr/, accessed: 09-01-2019.
- [5] TERRANOVA, https://ict-terranova.eu/, accessed: 09-01-2019.
- [6] THOR, https://thorproject.eu/, accessed: 09-01-2019.
- [7] iBROW, http://ibrow-project.eu/, accessed: 09-01-2019.

