HORIZON 2020 Terahertz based Ultra High Bandwidth Wireless Access Networks Deliverable ID: Preparation date: D2.5 06 January 2020 Milestone: Final Proposed Title: # Revised Research Alignment Report Editor/Lead beneficiary (name/partner): Alan Davy/WIT Internally reviewed by (name/partner): Cyril C. Renaud / UCL Luis Gonzalez/ UCL Approved by: **PSC** | | Dissemination level | | | | | | | | | |----|--|---|--|--|--|--|--|--|--| | PU | Public | X | | | | | | | | | СО | Confidential, only for members of the consortium (including Commission Services) | | | | | | | | | | | Revisions | | | | | | | | | | | | | |---------|------------|-------------------------|--------------|--------------------------------------|--|--|--|--|--|--|--|--|--| | Version | Date | Author | Organisation | Details | | | | | | | | | | | 0.1 | 23/08/2019 | Alan Davy, Saim Ghafoor | WIT | PSOC, Section 1, 2 and 3 updated | | | | | | | | | | | 0.2 | 04/09/2019 | Saim Ghafoor | WIT | Tables in Section 3 updated | | | | | | | | | | | 0.3 | 13/09/19 | Saim Ghafoor | WIT | Internal review comments addressed. | | | | | | | | | | | 0.4 | 13/09/19 | Saim Ghafoor | WIT | Changes addressed and final proposed | | | | | | | | | | # **Table of contents** | Та | ble of co | ontents | iii | |----|------------|---|----------| | Li | st of figu | ures | v | | Li | st of tab | les | v | | Ex | ecutive | summary | 1 | | 1 | Introd | luction | 3 | | | 1.1 | Summary | 3 | | | 1.2 | Structure of this document | 3 | | | 1.3 | Relationships with other deliverables | 3 | | | 1.4 | Contributors | 3 | | 2 | Resea | arch Alignment within the Project | 4 | | | 2.1 | Overview | 4 | | | 2.1.1 | Use cases | 4 | | | 2.1.2 | Requirements | 5 | | | 2.1.3 | Demonstrators | 5 | | | 2.2 | Methodology | 5 | | | 2.3 | Research alignment based on each use case and partner activities | 7 | | 3 | Resea | arch Alignment with State of the Art | 18 | | | 3.1 | Alignment of TERAPOD project with other projects | 18 | | | 3.2 | Related contributions against task activities and requirements in TERAPOD a | nd other | | | projects | | 21 | | 4 | Conc | lusion/Further work | 29 | | 5 | Refer | rences | 30 | # List of figures | Figure 1: Research alignment methodology. | 6 | |---|--------| | List of tables | | | Table 1: TSSG, research alignment summary | 7 | | Table 2: DER, research alignment summary | | | Table 3: TUBS, research alignment summary | 11 | | Table 4: INESC TECH, research alignment summary | 12 | | Table 5: VLC, research alignment summary | | | Table 6: NPL, research alignment summary | 13 | | Table 7: UGLA, research alignment summary | 15 | | Table 8: ACST, research alignment summary | 16 | | Table 9: UCL, research alignment summary | 16 | | Table 10: Alignment of TERAPOD project with other projects | 18 | | Table 11: Parameters and features focused in Terahertz related projects | 19 | | Table 12: Contributions and alignment by TSSG and other projects for technical requirements | | | Table 13: Contributions and alignment by DER and other projects for technical requirements | 22 | | Table 14: Contributions and alignment by TUBS and other projects for technical requirements | 23 | | Table 15: Contributions and alignment by INESC TEC and other projects for technical requirement | ents24 | | Table 16: Contributions and alignment by VLC and other projects for technical requirements | 25 | | Table 17: Contributions and alignment by UGLA and other projects for technical requirements | 25 | | Table 18: Contributions and alignment by NPL and other projects for technical requirements | 26 | | Table 19: Contributions and alignment by ACST and other projects for technical requirements | 27 | | Table 20: Contributions and alignment by UCL and other projects for technical requirements | 28 | # **Executive summary** The purpose of this report is to track, assess, validate and align the proposed technological developments of the project with the goals and requirements of the use cases. It closely aligns the work within the technical work packages to the scenarios previously specified. This report is in continuation of the Initial Research Alignment Report (D-2.4). The objectives of this deliverable are to report on the activities of T2.2 which focuses on: - aligning the research activities carried out with the project to the set of use case requirements that were initially defined - validation and demonstration of the work through the demonstrators - alignment with other Terahertz cluster projects and recent emerging state of the art activities in the Terahertz communication area. - follow up the previous task activities and requirements from D-2.4 (The Initial Research Alignment Report) to track the updates. #### 1 Introduction # 1.1 Summary This deliverable presents the Revised Research Alignment Report for the TERAPOD project. It presents the continued alignment and validation for technological requirements and advancements carried out within TERAPOD domain particularly from Work Packages (WPs) 3 to 5 with use case scenarios specified in D-2.1. Mainly, the task activities are reviewed in detail which was previously detailed in the Initial Research Alignment Report of D-2.4 and aligned with technical requirements. These activities are also associated with the demonstrators outlined in TERAPOD proposal. Recent project activities are also aligned with other Terahertz cluster projects and recent state of the art findings in the Terahertz communication domain. #### 1.2 Structure of this document This document is laid out as follows: - Section 1 acts as an introduction to this deliverable, in summary, what it presents along with its relationship to other deliverables within the TERAPOD project and details what partners have helped contribute to this text. - Section 2 provides an overview of how technical activities from the various WPs are mapped to requirements, in the form of the use case scenarios. It also aligns these activities to the respective demonstrators outlined in the TERAPOD proposal, where all activities are validated and demonstrated by at least one demonstrator. - Section 3 presents how activities within TERAPOD align with other State-of-the-Art activities and technologies within the THz space across Europe and internationally. It details certain areas and publications related to the overall goals of the project. - Section 4 provides conclusions and a summary of the next steps in relation to the project. ### 1.3 Relationships with other deliverables The content presented in this document relates to the following deliverables: - D2.1 Initial Requirements and Scenario Specifications: this document presents an overview of the use case scenarios and detailed requirements - D2.4 Initial Research Alignment: this document presents an initial research alignment of task activities with technical requirements and use-case scenarios. #### 1.4 Contributors The following partners have contributed to this deliverable: - TSSG (Alan Davy) - TSSG (Saim Ghafoor) # 2 Revised Research Alignment within the Project This section will provide the updated task activities and their mapping with use cases, technical requirements and demonstrators. It is also ensured that all activities are tied to at least one requirement and are being validated and demonstrated by at least one demonstrator. The initial research alignment was presented in report D2.4 and in this report, the updated task activities are presented. #### 2.1 Overview The requirements for different use cases (mentioned below) are already discussed in detail in deliverable D2.1 and updated in D2.2. It is important before developing any research alignment that each partner agrees on the broad definition of the requirements and use cases. A clear understanding of these requirements and demonstrator help in using the efforts towards the required deliverables. Therefore, initially, the requirements and demonstrators will be explained in this document, followed by the methodology to establish a mapping between the task activities, requirements and the demonstrators for each partner. #### 2.1.1 Use cases There are four use cases which were finalized to establish the feasibility of Terahertz band communication within a Data Centre environment. These use cases are mentioned and discussed in much detail in Deliverable D-2.1 (Initial requirements and scenario specifications). We can summarise as follows; #### 1. TERAPOD-UC-01: Commercial Feasibility of THz DC Wireless Networks In this use case, the commercial feasibility of the Terahertz band is aimed to be established within a data center environment. The functional and non-functional requirements might influence the implementation of such high transmission rate bands. Therefore, different aspects for devices, antennas, transceivers, materials, and communications are considered and established to achieve the Terahertz link expected performances. The considered factors also include the geometry of data centers, topologies, achievable rates, power consumption, channel modeling, and environmental effects. All these are considered to assess the feasibility to establish a wireless Terahertz link. #### 2. TERAPOD-UC-02A: Static (Layer-1) THz Wireless Data Links This use case is focused on the integration of static Terahertz wireless link within a Datacenter environment. It also includes the performance comparison of Terahertz wireless link with wired links (optical) in terms of achievable data rate and feasibility of point to point communication. The important factors in achieving the point to point connectivity are to analyse the device and transceiver characteristics with antenna alignment to establish the distance achievable with required throughput and delay.
3. TERAPOD-UC-02B: Dynamic (Multi-Layer) THz Wireless Data Link Integration This use case is focused on point to multipoint communications and analysis of different network aspects including network congestion, minimising link downtime, delay and maximising throughput. It is also focused on developing efficient networking protocols to implement on-the-fly and flexible solutions. #### 4. TERAPOD-UC-03: Wireless Data Centre Auto-Configuration This use case involves the full integration of wireless Terahertz link within a data center with auto-configuration which includes automated device discovery, configuration, and synchronization with existing devices. It also involves the automated re-configuration of beam-direction, range, and other appropriate parameters. #### 2.1.2 Requirements Various functional and non-functional requirements are already listed in D2.1 and D2.2 and therefore are not discussed here. A summary of the requirements for each use case is given below. - 1. Use case 1: includes requirements for end-user; data transmission; scenario; interface including topologies, geometry, safety and workloads; and technology. Non-functions requirements include the testing and validation, cost and commercial factors and licensing considerations. - 2. Use case 2A: includes the data transmission including data rate, bit error rate, and power consumption; detailed description of scenario; interface requirements including components and external systems with traffic load and links; technology including the communication layer parameters; device including transmitter and receiver devices such as RTDs or UTC-PDs; and non-functional requirements. - 3. Use case 2B: Analogous to use case 2A. 4. Use case 3B: Mostly the same as for use case 2A and 2B, the details about the communication parameters are outlined in D2.1 and D2.2. #### 2.1.3 Demonstrators The implementation, configuration and achieved goals will be validated using the following demonstrators: - 1. Simulation: Simulation for proof of concept and end-to-end performance analysis. - 2. Bench-top testing: Bench-top testing for implementation of point-to-point Terahertz wireless link, beam formation, spatial configuration and other designed configurations for different devices and components. - 3. DC Integration: Integration and analysis of Terahertz Wireless link within a Data Centre environment # 2.2 Methodology The main objective for this methodology is to track down the progress and research outputs and their mapping with the demonstrators and requirements, essentially through the involved task activities. The research alignment should evolve with project knowledge and progress throughout the project lifeline. The following methodology (also shown in Figure 1) is used to track the project progress. - 1. The requirements and goals for each use case scenario will be identified by each project partner individually. - 2. Task activities should be identified clearly, as to how these requirements or goals can be achieved. - 3. The proof-of-concept for each task activity should be shown using one of the identified demonstrators. - 4. The identified demonstrators and task activities will be used to check the achievability of individual goals identified at the beginning of the project. Figure 1: Research alignment methodology. # 2.3 Revised Research alignment based on the use case and partner activities The research alignment of requirements and task activities was presented in report D-2.4. In this section, the research alignment status by each partner is revised to update the completion of different task activities. Table 1 to 9 presents the updated task status by each partner. Table 1: TSSG, revised research alignment summary | | | | | | Timeline to | | | | | |-------------|--|---------------------|---|--|-----------------|----------------------|------------------------|-------------|------------------| | Use
case | Requirement | Work
package | Task
activity
number | Task activities | Delive
rable | Starti
ng
time | Comp
letion
time | Status | Demonstrat
or | | | To identify
issues and
challenges for
THz MAC
layer | WP-5 | T-5.2 | Literature review for exiting
Terahertz communication
protocols | D-5.3 | M12 | M-14 | Completed | | | | - | WP-5 | T-5.2 | Analyses and selection of existing simulators for Terahertz communications | D-5.3 | M-08 | M-
13S | Completed | Simulation | | | Initial Data | WP-5 | T-5.2 | Initial Data Link Layer Block
Diagram | D-5.3 | M-08 | M-13 | Completed | | | UC-
01 | Link Layer
simulator | WP-5 | T-5.2 | Physical layer parameters
analyses to be used in the
link-layer simulator | D-5.3 | M-08 | M-14 | Completed | Simulation | | | | WP-5 | T-5.2 | Implementation/simulation of DLL basic functionalities on MATLAB/NS3 | D-5.3 | M-10 | M-15 | In-progress | Simulation | | | Traffic
modeling and
workload
estimation of
Data Centres | WP-5 | T-5.2 | Theoretical Frame generation
and DLL buffer modeling
using Markov Chain | D-5.3 | M-12 | M-15 | In-progress | Simulation | | | | WP-5 | T-5.2 | Capturing real traces from
Data Centre environment and
equivalent traffic generation | D-5.3 | M-10 | M-24 | Completed | Simulation | | | Initial Data
Link Layer
simulator | WP-5 | T-5.2 | Implementation of Point to
point link for Data Centre
scenario using directional
antennas | D-5.3 | M-15 | M-18 | In-progress | Simulation | | | | WP-5 | T-5.2 | Implementation of channel model and physical layer aspects | D-5.3 | M-15 | M-26 | In-progress | Simulation | | | | WP-5 | T-5.2 | Interfacing between Physical, MAC and Network Layers | D-5.3 | M-15 | M-26 | In-progress | Simulation | | UC-
2A | DC Geometry | WP-5 | T-5.2 | Wireless topology design
within a Data Centre using
inter/intra rack
communication | D-5.3 | M-18 | M-20 | Completed | Simulation | | | Handshaking mechanism | WP-5 | T-5.2 | Handshaking mechanism proposed and implemented | D-5.3 | M-20 | M-24 | In-progress | Simulation | | | | | | Simulations carried out for maximum distance achievability | | | | In-progress | Simulation | | | Data rate and transmission distance | smission WP-5 T-5.2 | Simulations performed to analyse the achievable data rate | D-5.3 | M-24 | M-26 | In-progress | Simulation | | | | | | | Comparison of an optical and
THz link within a Data Centre
environment | | | | Not started | Simulation | | UC-
2B | Final Data
Link layer
simulator | WP-5 | T-5.2 | Point to multipoint scenario implemented and simulated for a Data Centre environment within a simulator using directional antennas | D-5.4 | M-26 | M-30 | Not started | Simulation | | | DC Geometry | WP-5 | T-5.2 | Extended simulations performed for point to multipoint scenario with directional antennas | D-5.4 | M-28 | M-30 | Not started | Simulation | |----------|---|------|-------|--|-------|-------|--------|-------------|------------| | | Handshaking
mechanism | WP-5 | T-5.2 | Advanced Handshaking
mechanism proposed and
implemented with directional
antennas | D-5.4 | M-30 | M-33 | Not started | Simulation | | | Autonomous
algorithms for
discovery,
synchronizatio
n, and
configuration | | | Advanced algorithms for device discovery | D-5.4 | | | Not started | Simulation | | | | WP-5 | T-5.2 | Advanced algorithm for handshaking | | M-33 | M-36 | Not started | Simulation | | UC
03 | | WF-3 | 1-3.2 | Advanced algorithms for synchronization, antenna alignment, and link configuration | D-3.4 | WI-33 | 101-30 | Not started | Simulation | | | Autonomous
algorithms
using dynamic
traffic loads | WP-5 | T-5.2 | Simulation of different traffic loads to analyse the performance and achievable data rate with transmission distances. | D-5.4 | M-35 | M-36 | Not started | Simulation | Table 2: DER, revised research alignment summary | | Table 2: DER, revised research alignment summary | | | | | | | | | | | | |-------------|---|--|--|--|---|--|-----------------------|--------------------------------|--|-----------|--|--| | | | | | | | | to finish the
task | | | | | | | Use
case | Requirement | Work
package | Task
activity
number | Task activities | Deliverable | Starting
time | Completion time | Current
status | Demonstrator | | | | | | | | | Define use case
scenarios
Stakeholder/end-
user interviews & | D2.1 | | | Completed | | | | | | UC-
01 | End-user
requirements
Technology
Requirements | WP2 | T2.1 | workshops
Business Model
Canvas
Examine | D2.2 | M1 | M36 | Completed | DC integration Benchtop End-to-end | | | | | OT | Non-
functional
Requirements | | | commercial opportunities for THz/DC integration Identify potential safety risks and customer/market risks | D2.3 | | | In-
progress | simulator | | | | | | | | | Define use case
scenarios
Stakeholder/end-
user interviews & | D2.1 | |
| Completed | | | | | | | End-user requirements Technology Requirements Non-functional Requirements | requirements Technology Requirements WP2 | requirements Technology Requirements WP2 | irements nnology irements WP2 T2.1 | T2.1 | workshops
Business Model
Canvas
Examine | D2.2 | M1 | M36 | Completed | DC integration
Benchtop
End-to-end | | | | | onal | | commercial opportunities for THz/DC integration Identify potential safety risks and customer/market risks | D2.3 | | | In-
progress | simulator | | | | | UC-
2A | | | | | Study and develop
flexible models to
support multiple
different network
simulation scenarios
within the data | D5.5 | | | Completed | | | | | | | 1 | T5.3 | centre Design of Layer 3 routing algorithms/protocols and other (anycast/multicast) • Trial network simulator mapping traffic and THz communication across links within a datacentre | D5.6 | М7 | M36 | In-
progress | End-to-end
Simulator | | | | | | Interface requirements | W/P6 | P6 T6.3 | Embedding THz
links into a comms
network - DER data | D6.5 | 5
M4 | M36 | On-going
or in-
progress | DC integration | | | | | | | | | centre | D6.6 | | | Not
Started | | | | | | UC-
2B | End-user
requirements
Technology
Requirements | WP2 | T2.1 | Define use case
scenarios
Stakeholder/end-
user interviews & | D2.1 | M1 | M36 | Completed | DC integration
Benchtop
End-to-end | | | | | | Non- | | | workshops
Business Model | D2.2 | | | Completed | simulator | | | | | | functional | | | Canvas | | | | | | | |-----------|--|-------------------------|------------------------------|---|---|--------|-----------|--|-------------------------|----------------| | | Requirements | | | Examine | | | | | | | | | | | | commercial opportunities for THz/DC integration Identify potential safety risks and customer/market risks | D2.3 | | | In-
progress | | | | | I. C | | | Further design of routing protocols, simulation | D5.5 | | | Completed | F 14 1 | | | | Interface
requirements | WP5 | T5.3 | scenarios, etc. Partitioning of data traffic and software- defined networking (SDN) integration | D5.6 | M7 | M36 | In-
progress | End-to-end
Simulator | | | | | | | Fully demonstrate
THz links in a data | D6.5 | | | In-
progress | | | | | Interface requirements | WP6 T6 | T6.3 | T6.3 | centre environment
through real-time
device/link
integration | D6.6 | M4 | M36 | Not
Started | DC integration | | | | | | Define use case
scenarios
Stakeholder/end-
user interviews & | D2.1 | | | Completed | | | | | End-user
requirements
Technology
Requirements | ts
y
nts WP2 T2.1 | commercial opportunities for | Business Model
Canvas | D2.2 | M1 M36 | Completed | DC integration
Benchtop
End-to-end | | | | UC-
03 | Non-
functional
Requirements | | | opportunities for
THz/DC integration
Identify potential
safety risks and
customer/market
risks | D2.3 | | | In-
progress | simulator | | | | Interface
requirements | | | Further design of routing protocols, simulation scenarios, etc. | D5.5 | D5.5 | | Completed | End-to-end | | | | | WP5 | T5.3 | Partitioning of data
traffic and software-
defined networking
(SDN) integration | D5.6 | M7 | M36 | In-
progress | Simulator | | Table 3: TUBS, revised research alignment summary | | | | | : 10BS, revised research | Timeline | | to finish the | | | |-------------|--|------------------|----------------------------|---|----------------------|---------------|--------------------|-----------------|---| | Use
case | Requirement | Work
package | Task
activity
number | Task activities | Deliv
erable | Starting time | Completion
time | Status | Demonstrator | | UC-
01 | Sustainability
Technology
requirements | WP7 | T7.4 | Standardization activities to
strengthen the Data Centre
Scenario as an application for
the THz technology | D7.5
D7.6
D7.7 | M1 | M36 | In-
progress | DC integration Benchtop End to end simulation | | | | | | Channel measurement for
Channel
Characterization of Use Case
Scenarios | D4.3 | M1 | M10 | Completed | End to end
Simulator | | | Data Centre
geometry | WP4 | T4.2.1 | Study of channel characteristics for different transmission scenarios (General Characterization, Top of Rack, Intra-Rack) in the data center | D4.4 | M10 | M20 | In-
progress | End to end
Simulator | | | Network
Requirements | | T4 2 2 | Build a 3D data center model
for ray tracing channel
simulations | D4.4 | M10 | M22 | Completed | End to end
Simulator | | | | | T4.2.2 | Extensive ray-tracing simulations to fully characterize the channel | D4.4 | M22 | M28 | In-
progress | End to end
Simulator | | UC- | | | | Creation of a model of the THz channel which will be fed to the PHY simulator | D4.4 | M26 | M30 | In-
progress | End to end
Simulator | | 2A | | | | First simple physical layer
simulator implementing
the current standard of THz
communication which gives
BER and PHY delay for the
measured scenarios using a
simple channel model | D5.1 | M1 | M15 | Completed | End to end
Simulator | | | Data Rate of
THz links | WP5 | T5.1 | Implementation of the THz
Channel model in the PHY
simulator | D5.2 | M15 | M33 | In-
progress | End to end
Simulator | | | Bit Error Rate | | | Implementation of forward error correction methods in the PHY simulator | D5.2 | M15 | M27 | In-
progress | End to end
Simulator | | | | | | Analysis of Bit Errors in the PHY simulator and Development of a Statistical Error Model | D.5.2 | M15 | M33 | Not
started | Benchtop
End to end
Simulator | | | | | | Definition of interfaces between simulators | D5.1 | M1 | M6 | Completed | End to end
Simulator | | UC-
2B | Interface
requirements | WP5 | T5.1 | Development of an Error Model Generator which enables higher-level simulations employing a realistic PHY model | | M20 | M34 | Not
started | End to end
Simulator | | UC-
03 | Demonstration
or proof-of-
concept | oof-of- WP6 T6.2 | | Development of a simulator platform/interface which serves as a demonstration platform and illustrates how all different simulators work together (DC Geometry, Raytracing, PHY Sim, MAC Sim, Network Sim, Auto Config) | D6.3
D6.4 | M1 | M36 | In-
progress | End to end
Simulator | Table 4: INESC TECH, revised research alignment summary | | | - | | | | Timeline | to finish task | | | |---|---|-----------------|----------------------------|--|---|------------------|-----------------|-------------------|--| | Use
case | Requirement | Work
package | Task
activity
number | Task activities | Deliverable | Starting
time | Completion time | Current
status | Demonstrator | | | Antenna | | | Propose and validate by simulation a substrate integrated antenna design solution compatible with
existing manufacturing limitations. | D3.4 | M1 | M12 | Completed | | | | solution suitable
for substrate
integration with
UTC/RTD
sources, with
>11GHz | WP 3 | Т 3.5 | Improve initial substrate integrated antenna design solution in terms of impedance matching to the source. | D3.6 | M13 | M14 | Completed | Bench top | | UC-
02A,
UC-
02B
and
UC- | bandwidth,
>50% efficiency | | | Propose and validate
by simulation linear
arrays of 4, 8 and 16
elements through a
performance
assessment
(impedance matching
versus scanning range
and bandwidth) | near 116 h a D3.6 M15 M20 M19 M20 M19 M20 M19 M20 | | Completed | | | | 03 | Antenna array solution suitable for substrate integration with UTC/RTD sources, with >20dBi of realised gain, | WP3 | Т 3.5 | Propose and validate by simulation a full array of 16 x16 elements through a performance assessment (impedance matching versus scanning range and bandwidth) | D3.6 | M21 | M30 | Completed | End to end
simulator | | | >11 GHz
bandwidth, >(-
45°,+45°) of
scanning range,
<-15dB of side
lobe levels | | T 3.5 | Improve performance
of initial antenna array
design from D3.6,
through a
parameterizable model
(aiming to improve
realised gain, scanning
range and bandwidth) | D3.7 | | | On going | Simulator | | UC-
02A | Split-block,
CNC
compatible horn
antenna
solution, with
high gaussissity | WP3 | Т 3.5 | Propose and validate
by simulation a high-
gaussissity horn
antenna solution to be
interfaced with the
SBD receiver. | D3.6 /D 3.7 | M13 | M16 | Completed | DC integration
Bench top
End to end
simulator | Table 5: VLC, revised research alignment summary | | | | | | | Timeline | to finish task | | | |-------------|---|-----------------|----------------------------|---|-------------|---------------|-----------------|-------------------|-------------------------| | Use
case | Requirement | Work
package | Task
activity
number | Task activities | Deliverable | Starting time | Completion time | Current
status | Demonstrator | | | Beam steering
mechanism | | | Design a phase distribution Photonic Integrated Circuit for dynamic reconfiguration of the emission profile. The PIC design has been fabricated. | D3.3 | M1 | M24 | Completed | Simulations
Benchtop | | UC-
03 | for dynamic
allocation of
devices and of
bandwidth | WP3 | Task
3.4 | Test and characterization of the Phase Distribution PIC. Test building blocks and their effect on the system. Test system and the range of tuning for each element. | D3.5 | М8 | M24 | Completed | Benchtop | Table 6: NPL, revised research alignment summary | | | | | NFL, revised res | | | to finish task | | | | |-------------|--|-----------------|----------------------------|---|-------------|---------------|-----------------|-------------------|--------------|-----------| | Use
case | Requirement | Work
package | Task
activity
number | Task activities | Deliverable | Starting time | Completion time | Current
status | Demonstrator | | | UC-
01 | | | | | | | | | | | | | | | | Measure emitted
power of
transmitters (non-
Terapod device) | | M1 | M12 | Completed | Bench top | | | | Physical
Layer
TERAPOD
components | WP-4 | | Measure power
specturm of
transmitters (non-
Terapod device) | | | M1 | M12 | Completed | Bench top | | | | | | Measure
responsivity of
receivers (non-
Terapod device) | D4.1 | M1 | M12 | Completed | Bench top | | | UC-
02A | | | T4.1 | Measure radiation
pattern and
polarisation in the
far field (non-
Terapod device) | | M1 | M12 | Completed | Bench top | | | | Testing and validation | | | Measure emitted
power of
transmitters
(Terapod device) | D4.2 | M13 | M33 | Not
started | Bench top | | | | | | | Measure power
spectrum of
transmitter
(Terapod device) | | M13 | M33 | Not
started | Bench top | | | | | | | Measure
responsivity of
receivers (Terapod
device) | | M13 | M33 | Completed | Bench top | | | | | | | Measure radiation
pattern and
polarisation in the | | M13 | M33 | Not
started | Bench top | | | | | | | far field (Terapod | | | | ĺ | | |------------|---|------|--------|---|------|-----|-----|----------------|-----------| | | | | | device) | | | | | | | | Environmental conditions | WP-4 | T4.2.1 | Channel measurements in real(istic) ambient conditions using mock-up environment at NPL for systematic channel measurements and demo purposes | D4.4 | M12 | M24 | Completed | Bench top | | UC-
02B | | | | | | | | | | | | | | | Measure emitted
power of
transmitters (non-
Terapod device) | | M1 | M12 | Completed | Bench top | | | | | | Measure power
spectrum of
transmitters (non-
Terapod device) | | M1 | M12 | Completed | Bench top | | | Physical Layer - THz transceivers which support beam-steering TERAPOD components - Beamforming sub-system | WP-4 | | Measure
responsivity of
receivers (non-
Terapod device) | D4.1 | M1 | M12 | Completed | Bench top | | | | | T4.1 | Measure radiation pattern and polarisation in the far field (non- Terapod device) | | M1 | M12 | Completed | Bench top | | | | WI | 14.1 | Measure emitted
power of
transmitters
(Terapod device) | | M13 | M33 | Not
started | Bench top | | UC-
03 | Testing and validation | | | Measure power
spectrum of
transmitter
(Terapod device) | | M13 | M33 | Not
started | Bench top | | | | | | Measure
responsivity of
receivers (Terapod
device) | D4.2 | M13 | M33 | Completed | Bench top | | | | | | Measure radiation pattern and polarisation in the far field (Terapod device) | | M13 | M33 | Not
started | Bench top | | | Environmental conditions | WP-4 | T4.2.1 | Channel measurements in real(istic) ambient conditions using mock-up environment at NPL for systematic channel measurements and demo purposes | D4.4 | M12 | M24 | Completed | Bench top | Table 7: UGLA, revised research alignment summary | | | | | UGLA, Teviseu Tese | | Timeline | to finish the | | | |-------------|---|-----------------|----------------------------|--|--------------------|------------------|-----------------|--------------------|------------------------------| | Use
case | Requirement | Work
package | Task
activity
number | Task activities | Deliverable | Starting
time | Completion time | Status | Demonstrator | | UC-
01 | | | | | | | | | | | | | | | Realisation of 150 GHz RTD in chip form with adequate output power (0.5 – 1 mW) and tunability (a few GHz) for use as local oscillators in coherent Schottky Barrier Diode (SBD) based THz receivers being developed partner ACST. | T-4.3 and
T-3.5 | M-1 | M-15 | Completed | Bench top and DC integration | | UC-
2A | Terahertz Device components (RTDs and SBDs) | WP-3 | T-3.2 | Realisation of 300 GHz RTD sources with on-chip antennas and their packaging (for use with a silicon lens, which is a classical approach that is employed for some other semiconductor sources) | T-4.3 and
T-3.5 | M-1 | M-20 | Near
Completion | Benchtop and DC integration | | | | | | Realisation of 300 GHz RTD sources in substrate-in- waveguide (SIW) technology (as an alternative approach which employs proven high gain waveguide horn antennas) | T-4.3 and
T-3.5 | M-1 | M-24 | In-progress | Benchtop and DC integration | | | | | | Realisation of high
power (>3 dBm) 300
GHz sources and
their packaging as
noted above | T-4.3 and
T-3.5 | M-1 | M-30 | In-progress | Benchtop and DC integration | Table 8: ACST, revised research alignment summary | Table 8: ACST, revised research alignment summary Timeline to finish the |---|--|-----------------|----------------------------|--|---|------------------|-----------------------|--------------------------------------|---|---|-----|-----|-----|-----|-----|-----|-----|------|--|---|------|-----|-------------|--------------------------------------|---| | | | | | | | | to finish the
task | Use
case | Requirement | Work
package | Task
activity
number | Task activities | Deliverable | Starting
time | Completion time | Current
status | Demonstrator | | | | | | | | | | | | | | | | | | UC-
01 | Requirements,
challenges, and
technical
inputs |
WP2 | T2.1 | Provide support in the definition of technical aspects and technologies compatibility. Identify technological requirements for the THz TERAPOD receiver. | D2.1 | M1 | М6 | Completed | Т3.3 | Provide SBD
quasi-optical
detectors able to
work from 0.05-
2.5 THz | D3.1 | M1 | М3 | Completed | DC
integration,
Benchtop | | | | | | | | | | | | | | | | | | UC-
2A | Delivery of
SBD-based
THz detectors
and mixers for
TERAPOD | WP3 | WP3 | Т3.3 | Development of a
preliminary 300
GHz Frequency
mixer based on
SBD technology. | D3.2 | M1 | M13 | Completed | DC
integration,
Benchtop,
simulation | | | | | | | | | | | | | | | | | | receiver part | | Т3.3 | Development of
an SBD-based
150 GHz doubler
to provide local
oscillator power
for the 300 GHz
mixer. | D3.6 | M11 | M18 | Designed
ready for
fabrication | Benchtop | Т3.3 | Delivery of a 300
GHz receiver
System for
preliminary
demonstration of
use case in the
Data Centre. | D3.3 | M11 | M18 | Cancelled
by
Consortium | DC
integration,
Benchtop,
simulation | | | | | | | | | | | | | | | | | | | Delivery of
SBD-based | WP3 Т3.3 | Development of a
300 GHz mixer
based on low
barrier SBDs to
reduce LO power
requirements | D3.7 | M17 | M24 | In-progress | DC
integration,
Benchtop,
simulation | | UC-
2B | THz receiver at
300 GHz able
to provide 100
Gbps | | | | | | | | | | | | | | | | | T3.5 | Development of a
150 GHz
Oscillator using
RTDs and/or
UTCs | D3.6 | M15 | M20 | In-progress | DC integration, Benchtop, simulation | | | | | | | T3.5 | Mechanical
design of a 300
GHz horn antenna
in collaboration
with INESC | D3.6 | M15 | M18 | Design
Ready
Fabrication
in process | Benchtop,
simulation | | | | | | | | | | | | | | | | | | | WP4 | T4.1 | Characterisation
of a preliminary
SBD 300 GHz
Mixer | D4.2 | M7 | M13 | Completed | DC
integration,
Benchtop | Characterisation
of SBD 300 GHz
Doubler | D4.2 | M16 | M18 | Not started | Benchtop,
simulation | |--|------|--|------|-----|-----|-------------------------------|---| | | | Characterisation
of 150 GHz
Oscillator based
on RTDs and/or
UTCs | D4.2 | M18 | M24 | Not started | Benchtop | | | | Characterisation
of the Low barrier
SBD 300 GHz
mixer | D4.2 | M20 | M24 | Not started | Benchtop,
simulation | | | | Characterisation
of the preliminary
300 GHz receiver | D4.3 | M16 | M18 | Cancelled
by
Consortium | DC
integration,
Benchtop,
simulation | | | T4.2 | Characterisation
of low barrier
SBD-based 300
GHz Receiver
using RTD/UTC
oscillator | D4.4 | M20 | M24 | Not started | DC
integration,
Benchtop,
simulation | Table 9: UCL, revised research alignment summary | | | | | · | | Timeline | to finish task | | | | | | | |-------------|--|-----------------|----------------------------|--|-------------|---------------|---|-------------------|------------------------------|-----|------|-----------|------------------------------| | Use
case | Requirement | Work
package | Task
activity
number | Task activities | Deliverable | Starting time | Completion time | Current
status | Demonstrator | | | | | | | | | | Development of
UTCs integrated
with bow-tie
antenna for
operation in 230
GHz - 290 GHz
range | D 3.1 | M-1 | M-3 | Completed | Bench top and DC integration | | | | | | UC-
2A | Uni Travelling
Carrier
Photodetector
developments | WP-3 | T-3.1 | Development of
UTCs integrated
with slot
antenna for (a)
broadband and
(b) 300 GHz
operation | D 3.6 | M-3 | M-20 | Completed | Bench top and DC integration | | | | | | | | | | Development of array of UTCs | D 3.6 | M-3 | M-20 | Completed | Bench top and DC integration | | | | | | | | | | Development of
UTCs with bias
tee to act as LO
in THz receiver | D 3.7 | M-20 | M-30 | In-progress | Bench top and DC integration | | | | | | | | | | Development of
UTC integrated
with INESC
antenna | D 3.7 | M-20 | M-30 | In-progress | Bench top and DC integration | | | | | | UC- | Rench ton | | | Demonstration
of multi-channel
transmission in
the 200 GHz -
300 GHz band | D 6.1 | M-1 | M-16 | Completed | Bench top and DC integration | | | | | | 2A | Bench top
demonstrator | | | | | WP-6 | T-6.1 Demonstration of 40 Gbit/s at 250 GHz | | D 6.1 | M-1 | M-16 | Completed | Bench top and DC integration | | | | | | Demonstration
of 100 Gbit/s
transmission | D 6.2 | M-16 | M-33 | In-progress | Bench top and DC integration | | | | | # 3 Research Alignment with State of the Art This section will provide an overview of where the activities within TERAPOD sit in relation to other activities being pursued within Europe and Internationally within the THz communication space. ## 3.1 Alignment of TERAPOD project with other projects The sections will be aligned with the activities of TERPAOD and will depict similar activities within these groups, to show how TERAPOD is progressing in comparison to these activities. Table 9, in this regard, shows the comparison of TERAPOD project with other European and International projects. The main difference lies in the application scenario which is a Data Centre. It mainly involves high capacity wireless link, fully integrated system and its architecture with antenna and transceiver design, whereas other projects are either focusing on a limited domain or represent a different application scenario. The indoor scenario faces different challenges than the outdoor environment including channel model and losses. The parameters focused in different projects are given in Table 10. Table 10: Alignment of TERAPOD project with other projects. | Project | Region | Focus | Alignment to TERPAOD | |---|-------------------------|--|--| | ULTRAWAVE | EU
H2020 | High capacity backhaul links to enable 5G cell densification by exploiting bands beyond 100 GHz | High capacity point to point and
multipoint links within a Data
Centre environment by exploiting
bands beyond 300 GHz | | TERRANOVA | EU
H2020 | System architecture for embedding broadband THz wireless links into fiber-optic links for beyond 5G networks by exploiting 270 and 330 GHz band. Mainly, focused on electro-optical baseband interfaces, Integrated THz front-ends and correction schemes for hybrid fiber optic and wireless links | Full system integration within a Datacenter environment with wireless and hybrid (optical and wireless) links by focusing on RTDs, SBDs, UTC-PDs, and communication architecture | | EPIC | EU
H2020 | Forward error correction codes and design | FECs are also part of TERAPOD aims and objectives | | DREAM | EU
H2020 | Exploiting radio spectrum bands like 130-174.8
GHz with beam steering functionality to reach
optical systems speed | Exploiting radio spectrum beyond 300 GHz to provide higher data rates for a Data Centre environment. | | WORTECS | EU
H2020 | Optical wireless communication and radio over 90 GHz Proof of Concept with Gbps throughput. | One of the use cases in TERAPOD is also focusing on optical wireless integration within a Data Centre | | NTT & Tokyo Uni. | JAPAN | IC capable of 100Gbps at 300GHz. Target source is InP-HEMT. Single carrier. | TERAPOD is focusing on RTD and UTC-PD technologies, also at 300GHz and 100Gbps. | | TERRANOVA: A testbed for Terahertz communication | US, Buffalo
NSF. | Developing a fully integrated THz communication testbed targeting 1THz. | TERAPOD demonstrators are focusing on 300 GHz and will be fully integrated into a DC deployment. I.e. not a testbed. | | Hybrid Graphene/Semiconductor Plasmonic Nano- Transceiver and Nano- Antenna for Terahertz- Band Communication | US, Buffalo
US AFOSR | Development of a Plasmonic THz source coupled with a graphene antenna. This is a fundamentally new approach to THz generation. | TERAPOD focuses on RTD and UTC-PD with aims of advancing TRL. | Table 11: Parameters and features focused in Terahertz related projects. | | | | | | | | • | | | _ | | | | | |-------------------|---|---|---|--|--|----------|----------|------------------------------|-------------------|---------------------------|---------|----------------|-----------|---------------| | Project | Scenarios | Bands | Distan
ce/Cov
erage | Features / connecti vity | Data rate | Latency | Mobility | Antenna | antenna gain | Channel/Propagation model | Devices | Physical layer | MAC layer | Network layer | |
TERR
ANOV
A | Backhaul | 270 to
320 GHz | 1 Km | Optical
and
wireless,
Small
cells | 100
Gbps | √ | √ | Phased array/Horn
antenna | 55 dBi is assumed | ✓ | Х | ~ | √ | X | | IBRO
W | Femtocell,
Wireless
portable
devices | 60 GHz -
1 THz | 10 m | Wireless
transceiv
er design | 10
Gbps | X | X | X | X | X | X | X | X | X | | ULTR
AWAV
E | Backhaul | 141-
148.5
GHz
(Backhau
l)
275-305
GHz
(Frontha
ul) | Frontha
ul: 600-
700m
Backha
ul: 600
m | P2P
(fronthau
l), P2MP
(Backhau
l) | 100
Gbps | √ | X | sector/terminal | 20 and 39 dBi | X | X | ✓ | X | X | | EPIC | Indoor and outdoor, short, medium and long-range chipset design | X | Х | FEC
Techniqu
es | 1
Tbps | X | X | X | X | X | CMOS | √ | X | X | | DREA
M | Backhaul/
Mesh
network | D-band | 300 m | P2P | 100
Gbps | X | X | X | X | X | X | X | X | X | | WORT
ECS | Virtual
reality
Office
Stadium and
Theme park | 90 GHz | 10 m | P2P | VR
(210
Gbps
)
Offic
e (25
Mbps
to 1
Gbps
)
Stadi
um
(20 -
50 | ~ | ✓ | X | X | Х | X | X | X | X | | | | | | | Mbps
) | | | | | | | | | | |-------------|-----------------------------------|----------------|------|---|-------------|----------|---|------|-----------|----------|--------------------------------------|----------|----------|----------| | THOR | Backhaul | 252-325
GHz | 1 Km | P2P,
P2MP | 100
Gbps | X | X | X | X | X | X | ✓ | X | X | | NTT | Wireless
downloading
system | 300 GHz | 10 m | P2P | 20
Gbps | X | X | X | X | X | X | X | X | X | | TERA
POD | Data centres | 300 GHz | 10 m | P2P,
P2MP,
Autonom
ous
connecti
vity | 100
Gbps | ✓ | X | Horn | 24
dBi | ✓ | RTDs
,
SBDs
,
UTC
PDs | ✓ | ✓ | √ | # 3.2 Related contributions against task activities and requirements in TERAPOD and other projects In this section, the contributions are mentioned against the identified requirements and task activities by each partner in the previous section. The related contributions in other related projects are also mentioned for requirements given in Terapod project. In most cases the deliverables are confidential in other projects. Therefore, only those related focused areas are mentioned which they have publicly disclosed. Table 11 to 19 highlights the contributions for Terapod identified requirements and task activities and other related projects. Table 12: Contributions and alignment by TSSG and other projects for technical requirements. | Use
case | Requirement | Work
packa
ge/
Task
numb
er | Task activities | Published
contribution in
paper or
deliverable
report | Related
contribution in
cluster projects | | |-------------|---|--|--|---|--|--| | | To identify issues and challenges for THz MAC layer | WP-
5/T5.2 | Literature review for exiting Terahertz communication protocols | [1] [2], D5.1 | TERRANOVA discuss
the challenges but for
backhaul link | | | | | WP-
5/T5.2 | Analyses and selection of existing simulators for
Terahertz communications | | TERRANOVA
discusses the
performance assessment | | | | Initial Data Link | WP-
5/T5.2 | Initial Data Link Layer Block Diagram | [3], D5.1, D5.3, D5.5 | under different propagation conditions. | | | UC-
01 | Layer simulator | WP-
5/T5.2 | Physical layer parameters analysis to be used in the link-layer simulator | | EPIC project contributes to the radio | | | | | WP-
5/T5.2 | Implementation/simulation of DLL basic functionalities on MATLAB/NS3 | | link quality using polar codes for high data rate | | | | Traffic modelling and workload estimation | WP-
5/T5.2 | Theoretical Frame generation and DLL buffer modelling using Markov Chain | [4], D5.3 | contribution in cluster projects TERRANOVA discuss the challenges but for backhaul link TERRANOVA discusses the performance assessment under different propagation conditions. EPIC project contributes to the radio link quality using polar | | | | of Data Centres | WP-
5/T5.2 | Capturing real traces from Data Centre environment and equivalent traffic generation | [4], D3.3 | | | | | | WP-
5/T5.2 | Implementation of Point to point link for Data
Centre scenario using directional antennas | | using high power | | | | | WP-
5/T5.2 | Implementation of the channel model and physical layer aspects | [3] | cluster projects TERRANOVA discuss the challenges but for backhaul link TERRANOVA discusses the performance assessment under different propagation conditions. EPIC project contributes to the radio link quality using polar codes for high data rate ULTRAWAVE project using high power transmitter, it is possible to reach more than 500m using THz frequencies" D2.2 Final System and Components Specifications based on the evolution of the technological processes" | | | UC-
2A | Initial Data Link
Layer simulator | WP-
5/T5.2 | Interfacing between Physical, MAC and Network
Layers | Interfacing work is in progress | System and Components Specifications based on the evolution of the technological processes" | | | | DC Geometry | WP-
5/T5.2 | Wireless topology design within a Data Centre using inter/Intra rack communication | | | | | | Handshaking mechanism | WP-
5/T5.2 | Handshaking mechanism proposed and implemented | | | | | | | | Simulations carried out for maximum distance achievability | | | | | | Data rate and transmission distance | WP-
5/T5.2 | Simulations performed to analyse the achievable data rate | D5.3 | | | | | | | Comparison of an optical and THz link within a
Data Centre environment | | | | Table 13: Contributions and alignment by DER and other projects for technical requirements. | Use
case | Requirement | Work
package | Task activities | Published
contribution in
paper or
deliverable
report | Related
contribution
in cluster
projects | |-------------|--|-----------------|--|---|---| | UC-
01 | End-user
requirements
Technology
Requirements
Non-functional
Requirements | WP2,
T2.1 | Define use case scenarios Stakeholder/end-user interviews & workshops Business Model Canvas Examine commercial opportunities for THz/DC integration Identify potential safety risks and customer/market risks | D2.1, D2.2 | N/A | | | End-user
requirements
Technology
Requirements
Non-functional
Requirements | WP2,
T2.1 | Define use case scenarios Stakeholder/end-user interviews & workshops Business Model Canvas Examine commercial opportunities for THz/DC integration Identify potential safety risks and customer/market risks | D2.1, D2.2 | N/A | | UC-
2A | Interface
requirements | WP5,
T5.3 | Study and develop flexible models to support multiple different network simulation scenarios within the data centre Design of Layer 3 routing algorithms/protocols and other (anycast/multicast) • Trial network simulator mapping traffic and THz communication across links within a datacentre | [2], D5.5 | N/A | | | Interface requirements | WP6,
T6.2 | Embedding THz links into a comms network - DER data centre | N/A | N/A | | UC- | End-user
requirements
Technology
Requirements
Non-functional
Requirements | WP2
T2.1 | Define use case scenarios Stakeholder/end-user interviews & workshops Business Model Canvas Examine commercial opportunities for THz/DC integration Identify potential safety risks and customer/market risks | D2.1, D2.2 | N/A | | 2B | Interface
requirements | WP5,
T5.3 | Further design of routing protocols, simulation scenarios, etc. Partitioning of data traffic and software-defined networking (SDN) integration | D5.5 | N/A | | | Interface requirements | WP6,
T6.3 | Fully demonstrate THz links in a data center environment through real-time device/link integration | N/A | N/A | | UC-
03 | End-user
requirements
Technology
Requirements
Non-functional
Requirements | WP2,
T2.1 | Define use case scenarios Stakeholder/end-user interviews & workshops Business Model Canvas Examine commercial opportunities for THz/DC integration Identify potential safety risks and customer/market risks | D2.1, D2.2 | N/A | | | Interface
requirements | WP5,
T5.3 | Further design of routing protocols, simulation scenarios, etc. Partitioning of data traffic and software-defined networking (SDN) integration | N/A | N/A | Table 14: Contributions and alignment by TUBS and other projects for technical requirements. | Use
case | Requirement | Work
package | Task activities | Published
contribution in
paper
or
deliverable
report | Related contribution in cluster projects | |-------------|---|-------------------|--|---|---| | UC-
01 | Sustainability
Technology requirements | WP7,
T7.4 | Standardisation activities to strengthen
the
Data Centre Scenario as an application
for THz technology | D7.5, D7.6,
[14,15] | | | | | | Channel measurement for Channel
Characterization of Use Case Scenarios | D4.3, [6,16] | | | | Data Centre geometry | WP4, | Study of channel characteristics for different transmission scenarios (General Characterization, Top of Rack, Intra-Rack) in the data centre | | THOR and TERRANOVA also deal with channel characterisation. Thor project contributes to the same PHY layer simulator but with focus on backhaul application Thor project contributes to the same PHY layer simulator | | | Network Requirements | T4.2.1,
T4.2.2 | Bild a 3D data centre model for ray tracing channel simulations Extensive ray-tracing simulations to fully characterise the channel Creation of a model of the THz channel which will be | D4.3 | | | UC-
2A | Data Rate of THz links
Bit Error Rate | WP5,
T5.1 | fed to the PHY simulator First simple physical layer simulator implementing the current standard of THz communication which gives BER and PHY delay for the measured scenarios using a simple channel model Implementation of the THz Channel | D5.1 | contributes to the same PHY layer simulator but with focus on backhaul application Thor project | | | | | model in the PHY simulator Implementation of forward error correction methods in the PHY simulator Analysis of Bit Errors in the PHY simulator and Development of a Statistical Error Model | | same PHY layer | | UC-
2B | Interface requirements | WP5,
T5.1 | Definition of interfaces between simulators Development of an Error Model Generator which enables higher-level simulations employing a realistic PHY model | D5.1 | | | UC-
03 | Demonstration or proof-
of-concept | WP6,
T6.2 | Development of a simulator platform/interface which serves as a demonstration platform and illustrates how all different simulators work together (DC Geometry, Raytracing, PHY Sim, MAC Sim, Network Sim, Auto Config) | D6.3 | | Table 15: Contributions and alignment by INESC TEC and other projects for technical requirements. | | | | <u>-</u> | | | |-------------------|--|-----------------|---|---|--| | Use
case | Requirement | Work
package | Task activities | Published contribution in paper or deliverable report | Related contribution in cluster projects | | | | WP 3,
T3.5 | Propose and validate by simulation a substrate integrated antenna design solution compatible with existing manufacturing limitations. | | Terranova is
addressing phased
array and beam
steering, but using
linear horn antenna
array (Terranova
D5.1, D5.2 and D5.3) | | UC-
02A
and | Technology
requirement: device
antenna gain higher
than 20 dBi for 1 m
transmission (adjacent
racks). | WP 3,
T3.5 | Improve initial substrate integrated antenna design solution with antenna feed details. | D3.4, D3.6 | Dream project proposed optimal antenna elements for array development and beam steering operating in the D-band (Dream D2.3.3 D3.1, D3.2, D3.3 and D3.4) | | UC-
02B | | WP 3,
T3.5 | Propose and validate by simulation a waveguide-based solution to interface with the substrate integrated antenna array to provide the target gain. | 20.7,200 | | | | Technology
requirement: device | WP 3,
T3.5 | Improve initial waveguide-
based interface to substrate
integrated antenna array to
provide the target gain. | N/A | N/A | | | antenna gain higher
than 30 dBi for 10m
transmission (adjacent
aisles). | WP 3,
T3.5 | Propose and validate by simulation a horn antenna solution to be interfaced with the SBD receiver. | [7] | Terranova proposed 300 GHz horn antenna, but without focus in High-Gaussicity (Terranova D5.1, D5.2 and D5.3). | | UC-
03 | Technology
requirement: device | WP3 | Simulate antenna array radiation patterns resulting from array excitations with phase values given by the developed PIC, considering a Si lens. | D3.6 | Contributions already mentioned in Table 15. | | | antenna compatible
with beamforming
subsystem. | WP3 | Simulate antenna array radiation patterns resulting from array excitations with phase values given by the developed PIC, considering an antenna waveguide output. | D3.6 | | Table 16: Contributions and alignment by VLC and other projects for technical requirements. | Use case | Requirement | Work
package | Task activities | Published contribution in paper or deliverable report | Related contribution in cluster projects | |----------|--|-----------------|---|---|--| | | Beam | | Design a phase distribution Photonic Integrated Circuit for dynamic reconfiguration of the emission profile. The PIC design has been fabricated. | D3.3 Design report of phase distribution. · 2-stage MZI-based (tunable) power splitter · Ring resonators delaying elements. · SiN PIC tech with Aluminium metals | DREAM project has developed a Silicon BiCMOS-based transceiver with a beam steering integrated antenna array. [8] DREAM reported D2.3.3 on D-band radio front end for antenna beam steering tests and D3.4 on test system for digital control of beam steering demonstrators. | | UC-03 | steering
mechanism
for dynamic
allocation of
devices and
of bandwidth | WP3,
T3.4 | Test and characterization of the Phase Distribution PIC. Test building blocks and their effect on the system. Test system and the range of tuning for each element. | D3.5 Characterization report of phase distribution PIC · MMI imbalance below 2% · MZIs current operation for splitting tunability from 40 to 75 mA. · Maximum power rejection throughout the system of 24 dB. · Ring resonators delay at critical coupling show to be sufficient for a 0.1 THz signal to accomplish ±π/4 beam steering. | Related contributions to the field (VLC not involved): 5G-PHOS has developed optical beamforming functionalities for 5G communication networks. Here, the delay is based on a set of cascaded ring resonators. The system operated in the V-band (60GHz) [9] | Table 17: Contributions and alignment by UGLA and other projects for technical requirements. | Use
case | Requirement | Work
package | Task activities | Published
contribution
in paper or
deliverable
report | Related contribution in cluster projects | |-------------|---|-----------------|--|--|---| | | | | Realisation of 150 GHz RTD in chip form with adequate output power (0.5 – 1 mW) and tunability (a few GHz) for use as local oscillators in coherent Schottky Barrier Diode (SBD) based THz receivers being developed partner ACST. | Not yet | The 150 GHz RTD devices could find use in the ULTRAWAVE cluster project (discussions with coordinator underway) | | UC-2A | Terahertz Device components (RTDs and SBDs) | WP-3,
T3.2 | Realisation of 300 GHz RTD sources with
on-chip antennas and their packaging (for
use with a silicon lens, which is a classical
approach that is employed for some other
semiconductor sources) | D3.6, Paper
submitted to
IEEE Trans.
THz Science
and
Technology | Sources will be availed to some cluster partners for evaluation | | | | | Realization of 300 GHz RTD sources in
substrate-in-waveguide (SIW) technology
(as an alternative approach which employs
proven high gain waveguide horn
antennas) | Not yet | Sources will be availed to some cluster partners for evaluation | | | | | Realisation of high power (>3 dBm) 300
GHz sources and their packaging as noted above | Not yet | ТВС | Table 18: Contributions and alignment by NPL and other projects for technical requirements. | Use
case | Requirement | Work
package | Task activities | Published contribution in paper
or deliverable report | Related
contribution
in cluster
projects | |-------------|---|-----------------|---|--|---| | | | | Measure emitted power of transmitters Measure the power spectrum of the transmitter | | | | | | | Measure responsivity of receivers | | | | | Physical Layer
TERAPOD
components | WP-4, | Measure radiation pattern and polarisation in the far-field | D-4.1, [10,11,12] | | | UC- | Testing and validation | T4.1 | Measure emitted power of transmitters | <i>D</i> -4.1, [10,11,12] | | | 02A | | | Measure the power spectrum of the transmitter | | | | | | | Measure responsivity of receivers | | | | | | | Measure radiation pattern and polarisation in the far-field | | | | | Environmental conditions | WP-4,
T4.2.1 | Channel measurements in real(istic) ambient conditions using mock-up environment at NPL for systematic channel measurements and demo purposes | | | | | | | Measure emitted power of transmitters | | | | | Physical Layer - | | Measure power spectrum of the transmitter | | | | | THz transceivers which support | | Measure responsivity of receivers | | | | | beam-steering
TERAPOD | WP-4, | Measure radiation pattern and polarisation in the far-field | D-4.1, [10,11,12] | | | | components -
Beamforming sub- | T4.1 | Measure emitted power of transmitters | D 4.1, [10,11,12] | | | UC-
03 | system Testing and | | The measure power spectrum of the transmitter | | | | | validation | | Measure responsivity of receivers | | | | | | | Measure radiation pattern and polarisation in the far field | | | | | Environmental conditions | WP-4,
T4.2.1 | Channel measurements in real(istic) ambient conditions using mock-up environment at NPL for systematic channel measurements and demo purposes | | | Table 19: Contributions and alignment by ACST and other projects for technical requirements. | Use
case | Requirement | Work
package | Task activities | Published contribution in paper
or deliverable report | Related contribution in cluster projects | |-------------|---|-----------------------|---|--|---| | UC-
01 | Requirements,
challenges, and
technical
inputs | WP2,
T2.1 | | | | | | | | Provide SBD quasi-optical
detectors able to work from
0.05-2.5 THz | Described in D3.1.
Used by NPL for measurements | | | UC-
2A | Delivery of
SBD-based
THz detectors
and mixers for
TERAPOD
receiver part | WP3,
T3.3 | Development of a
preliminary 300 GHz
Frequency mixer based on
SBD technology. | Presented in D3.6 · Noise figure lower than 6 dB · ~ 2-3 mW LO power required · 270-320 GHz bandwidth | This is a commercial product at ACST | | | | | Development of an SBD-
based 150 GHz doubler to
provide local oscillator
power for the 300 GHz
mixer. | This proposal from ACST as a back-
up solution for TERAPOD wasn't
accepted by the project managers
as ACST output in the project. | The doubler was done, and it is a commercial product at ACST | | | | | Delivery of a 300 GHz
receiver System for
preliminary demonstration
of use case in Data Centre. | This proposal from ACST as a back-
up solution for TERAPOD wasn't
accepted by the project managers.
This is not an ACST output in the
project. | This receiver was presented in [13] | | | Delivery of | WP3,
T3.3 | Development of a 300 GHz
mixer based on low barrier
SBDs to reduce LO power
requirements | This is on-going. The fabrication of diodes is required | This receiver was presented in ISSTT2018 entitled "High Power Discrete Schottky Diodes Based 275-305 GHz Transceiver for FMCW- | | UC-
2B | SBD-based
THz receiver at
300 GHz able
to provide 100 | | Development of a 150 GHz
Oscillator using RTDs
and/or UTCs | This is on-going. Only chips from UGLA are available. There are no chips from UCL | | | | Gbps | | Mechanical design of a 300
GHz horn antenna in
collaboration with INESC | This is an on-going project. We are still in negotiation with the manufacturer due to problems in the implementation of the design | | | | | WP4,
T4.1,
T4.2 | Characterisation of a
preliminary SBD 300 GHz
Mixer | Presented in D3.6 · Noise figure lower than 6 dB · ~ 2-3 mW LO power required · 270-320 GHz bandwidth | This is a commercial product at ACST The doubler was done, and it is a commercial product at ACST This receiver was presented in [13] This receiver was presented in ISSTT2018 entitled "High Power Discrete Schottky Diodes Based 275-305 GHz | Table 19: Contributions and alignment by UCL and other projects for technical requirements. | 1 able | ble 19: Contributions and alignment by UCL and other | | | | inicai requirements. | | |-------------|---|----------------------------------|----------------------------|--|---|--| | Use
case | Requirement | Work
package | Task
activity
number | Task activities | Published
contribution in
paper or
deliverable
report | Related contribution in cluster projects | | | | | | Development of UTCs
integrated with bow-tie
antenna for operation in
230 GHz - 290 GHz
range | D 3.1 | | | UC-
2A | Uni
Travelling
Carrier
Photodetector
developments | avelling Carrier WP-3 todetector | WP-3 T-3.1 | Development of UTCs
integrated with slot
antenna for (a)
broadband and (b) 300
GHz operation | D 3.6 | | | | | | | Development of array
of UTCs
Development of UTCs | | | | | | | | with bias tee to act as LO in THz receiver | | | | | | | | Development of UTC integrated with INESC antenna | | | | | | | | Demonstration of
wireless bridge with
multi-channel
transmission in the 200
GHz - 300 GHz band | D 6.1 & [17] | Terranova is also
demonstrating high data | | UC-
2A | Bench top
demonstrator | WP-6 | T-6.1 | Demonstration of 40
Gbit/s wireless bridge
at 250 GHz | D 6.1 & [17] | rate THz links with PIN-PD. In their case no second portion of optical fibre is included | | | | | | Demonstration of 100
Gbit/s wireless bridge | | | # 4 Conclusion/Further work This report presents the progress update on the requirement and task activities which are highlighted for different use cases by each project partner. The objective here is to align the research for each use case according to work package progress in terms of the requirements, task activities and deliverables. The goal is then to track down the progress, match the deliverable and demonstrator with the identified requirements of each use case, and if required then to rectify them ahead of time. Initially, the progress update is presented on previously mentioned task activities (D2.4) within TERAPOD project. Requirements and features of different Terahertz related projects are highlighted. Finally, the contributions against each requirement are mentioned with focused contributions in other Terahertz related projects. # 5 References - [1] Saim Ghafoor, Boujnah Noureddine, Mubashir Husain Rehmani and Alan Davy. "MAC Protocols for Terahertz Communication: A Comprehensive Survey." ArXivabs/1904.11441 (2019). - [2] Sean Ahearne, Niamh O'Mahony, Noureddine Boujnah, Saim Ghafoor, Alan Davy, Luis Gonzalez Guerrero, Cyril Renaud "Integrating THz Wireless Communication Links in a Data Centre Network" accepted, IEEE 5G World Forum, Dresden, Germany, 30 September to 2 October 2019. - [3] Noureddine Boujnah, Saim Ghafoor, Alan Davy "Modeling and Link Quality Assessment of THz Network Within Data Center" 2019 European Conference on Networks and Communications (EuCNC), Valencia, Spain - [4] Noureddine Boujnah, Saim Ghafoor, Alan Davy "Impact of channel errors and data aggregation on throughput in THz communications" accepted, ACM NanoCom 2019, Dublin, Ireland. - [5] A. A. Boulogeorgos, E. N. Papasotiriou and A. Alexiou, "Analytical Performance Assessment of THz Wireless Systems," in IEEE Access, vol. 7, pp. 11436-11453, 2019. - [6] J. M. Eckhardt, T. Doeker, S. Rey and T. Kürner, "Measurements in a Real Data Centre at 300 GHz and Recent Results," 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 1-5. - [7] J. S. Tavares, L. M. Pessoa and H. M. Salgado, "Experimental Evaluation of Resonant Tunnelling Diode Oscillators Employing Advanced Modulation Formats," 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, 2018, pp. 1-4. - [8] LINK: http://www.h2020-dream.eu - [9] https://mems.lionix-international.com/5g-phos/ - [10] Jess Smith, Simon Nellen, Sebastian Lauck, Björn Globisch, Mira
Naftaly, "Beam Profile Investigation of an Optoelectronic Continuous-Wave Terahertz Emitter", IRMMW-THz (Sep 2019 Paris) - [11] M. Naftaly, "Device characterization for THz wireless links," 2017 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Munich, 2017, pp. 364-369. - [12] [LINK]: https://terapod-project.eu/wp-content/uploads/2018/03/Metrology-for-THz-devices.pdf - [13] "High Power Discrete Schottky Diodes Based 275-305 GHz Transceiver for FMCW-Radar", ISSTT, 2018. - [14] Kürner, T., & al, e. (2018). Introduction to the H2020 ICT-09-2017 Cluster. Warsaw: IEEE 802 Wireless Interim Meeting; [LINK] https://mentor.ieee.org/802.15/dcn/18/15-18-0177-01-0thz-introduction-to-the-h2020-ict-09-2017-cluster.pdf. - [15] Kürner, T: TERAPOD Terahertz based Ultra-High Bandwidth Wireless Access Networks, IEEE 802 Wireless Interim Meeting, [LINK] https://mentor.ieee.org/802.15/dcn/17/15-17-0587-00-0thz-terapod-terahertz-based-ultra-high-bandwidth-wireless-access-networks.pdf - [16] Eckhardt, J., Doeker, T., & Kürner, T. (2018). 300 GHz Channel Measurements in a Real Data Center -First Results. Bangkok: IEEE 802 Plenary; https://mentor.ieee.org/802.15/dcn/18/15-18-0519-00-0thz-300ghz-channel-measurements-in-a-real-data-center-first-results.pdf. - [17] Gonzalez-Guerrero, Luis, et al. "Pilot-tone assisted 16-QAM photonic wireless bridge operating at 250 GHz." arXiv preprint arXiv:1906.10440 (2019).