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Executive summary 

The deliverable D5.6 is split into two major chapters both relating to the implementation of Terahertz 

(THz) wireless links within a datacentre environment at the logical Network layer. Section 3 details the 

possible integration frameworks for the parameters required to effectively operate THz links in a 

datacentre environment. This involves definition of a low-level THz parameter storage system, based 

on an evolution of an existing manufacturer standard for the operation of optical links. This is followed 

by the definition of network architecture capable of utilizing this system, based on existing network 

protocols used in Software Defined Networking (SDN). SDN control of THz links is outlined with three 

of the major SDN protocols in use today: OpenFlow, P4, and NETCONF. How each protocol 

communicates with and controls THz links is outlined, with each protocol compared and contrasted to 

highlight their performance and features. Section 4 describes the creation of Virtual Network Functions 

(VNF’s) designed to effectively utilize a network of SDN-enabled THz links in conjunction with a 

traditional copper and optical datacentre network. VNF’s such as wireless fail-over and latency-

optimized routing are described at an architectural level, followed by integration of the VNF’s with an 

SDN controller to demonstrate functionality using network emulation. Successful demonstration of this 

functionality proves the ability of THz wireless links to be capable of full integration at all layers 

(physical, data link network) with SDN networks and automated controllers. This presents the potential 

for THz links to create a paradigm shift in network topology and architecture, as SDN controllers now 

have the ability to re-configure datacentre networks with THz links dynamically based on performance 

requirements. A feat previously not possible due to the fixed nature of wired copper and optical links.  
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1 Introduction 

1.1 Summary 

This deliverable aims to define and demonstrate the logical integration of Terahertz (THz) wireless links 

as part of a Software Defined Network (SDN). To achieve this, the creation of a network architecture 

capable of controlling THz links using an SDN network protocol needs to be created. This entails the 

definition of a hardware system capable of processing and controlling the various Physical Layer (PHY) 

parameters necessary for THz links to perform effectively. This system needs to be accessible using an 

SDN networking protocol through an Application Programming Interface (API). Once the SDN protocol 

has access to these parameters, an autonomous SDN controller can use these parameters to perform 

various Virtual Network Functions (VNF’s), provided the VNF has been programmed to process the 

THz wireless parameters during operation. Thus, the process of this deliverable is structured as follows: 

1. The definition of a THz hardware system to process and modify THz physical parameters 

2. Integration of this hardware system with SDN protocols 

3. Creation and implementation of SDN VNF’s based on these protocols.   

By doing this, we can verify full compatibility of THz wireless devices with datacentre networks.  

1.2 Structure of this document 

This document is structured as follows: 

• Chapter 2: Overview  

o This chapter will give a summarized explanation of the objectives of this deliverable. It 

will also provide a background on the motivation for this deliverable, and any 

assumptions made about THz link performance and operation.  

• Chapter 3 Integration Frameworks for THz Wireless Links in a Software Defined Network 

o This chapter covers the creation and operation of a THz hardware system capable of 

operating with datacentre network devices, followed by the architectural 

implementation of SDN protocols which can utilize it.   

• Chapter 4: THz Network Function Virtualization 

o This chapter goes into detail about the implantation of automated VNF’s designed 

around the use of the newly available THz wireless links as part of a datacentre network. 

• Chapter 5: Conclusions 

o This chapter presents a conclusion based on the information gathered for this 

deliverable. It also discusses future possibilities that can be made to THz links for future 

network development.   

1.3 Relationships with other deliverables 

This deliverable is the third deliverable of work package 6. The work presented in this document 

relates to the following deliverables:  

• D2.3 – Final Requirements and Scenario Specifications 

o The output of this deliverable serves to demonstrate and achieve requirements 

necessary for effective use of THz wireless links in a datacentre environment. 

These necessary requirements are outlined in D2.3. 

• D5.2 & D5.4 - (Final PHY/DLL Layer Models & Simulations) 

o A global THz physical parameter list was created outlining the possible 

physical capabilities of TERAPOD THz hardware devices. This list was 
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unified between all WP5 deliverables to improve consistency between layers 

and deliverables. 

• D6.6 – Final Datacenter Demonstrator 

o Where possible, architectural and functional outputs from this deliverable will 

be considered as an input to D6.6 for real-world demonstration. 

The following partners have contributed to this deliverable: 

• Sean Ahearne (Dell EMC) 

• Niamh O’Mahony (Dell EMC) 

• Luis Gonzalez Guerrero (UCL) 

• Noureddine Bounjah (TSSG) 

• Saim Ghafoor (TSSG) 

• Johannes Eckhardt (TUBS) 

1.4 Acronyms and abbreviations 

THz – Terahertz 

OSI – Open Systems Interconnection 

PHY – Physical Layer 

DLL – Data-Link Layer 

NET – Network Layer 

SDN – Software Defined Networking 

VNF – Virtual Network Function 

OS – Operating System 

KPI – Key Performance Indicator 

TCP – Transmission Control Protocol 

UDP – User Datagram Protocol 

LLDP – Link Layer Discovery Protocol 

M/Gbps – Mega/Gigabits per Second 

SFP – Small Form-factor Pluggable 

m/μ/ns – Milli/Micro/Nano-seconds 

BER – Bit Error Rate 

UTC-PD – Uni-Travelling Carrier Photo Diode 

SFP – Small Form-factor Pluggable 

ASIC – Application Specific Integrated Circuit 

EEPROM - Electrically Erasable Programmable Read-Only Memory 

I2C – Inter-Integrated Circuit 

API – Application Programming Interface 

NETCONF – NETwork CONFiguration 

YANG – Yet Another Next Generation 

MIMO – Multiple Input Multiple Output 

TDMA – Time Division Multiple Access 
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2 Overview  

2.1 Objectives 

The objective of this deliverable is determining the possibility of integration of THz wireless links as 

part of a traditional datacentre network. In order to achieve this integration, a number of questions need 

to be answered on how THz links can interact with all other devices typically found in a datacentre 

network. Software Defined Networking (SDN) plays a prominent role in modern datacentres, meaning 

integration of THz links using SDN principles is required1. Achieving this integration enables a new 

form of communication technology to be introduced to SDN datacentres, with the vast majority of 

previous networks only utilizing fixed point to point wired links. 

 

In order to achieve this objective, a method to enable datacentre network devices (such as a network 

switch) to monitor and control THz wireless devices needs to be created. An interface between the THz 

and a network switch needs to be defined. This interface needs to be compatible with the relatively 

simple electronics controlling the THz device, and the Operating System (OS) running on the network 

switch. Once this interface is defined, a method to abstract this interface such that it can be controlled 

using SDN principles needs to be investigated. A number of SDN protocols exist that are capable of this 

abstraction, provided extensions are made to the protocol to support THz links. This deliverable 

investigates the implementation of these extensions to three SDN protocols: OpenFlow2, P43, and 

NETCONF4. 

 

Once the architecture of abstraction of THz link parameters is achieved, the next objective is to 

demonstrate the implementation of SDN Virtual Network Functions (VNF’s) designed to utilize THz 

links. VNF’s are a virtual and software-defined implementation of network features frequently used and 

utilized in hardware in traditional enterprise networks, such routing, load-balancing, and firewalling5.  

In a similar fashion to the previous objective, these VNF’s require an extension in order to be able to 

control and manage THz wireless links. As these functions are software-defined, this enables the 

extensions to be implemented relatively quickly and without any possible hardware incompatibility 

issues. If the required THz parameters necessary to perform the required function have been abstracted 

using an SDN protocol, the VNF can quickly access and control the THz link through the protocols 

Application Programming Interface (API).  

 

The demonstration of this implementation will be performed using network emulation. A number of 

network topologies and scenarios will be created in order to test the modified VNF’s with an emulated 

network of THz wireless links operating in a network in conjunction with traditional wired links. For 

each modified VNF tested, a network scenario will occur that forces the networks SDN controller to 

execute that function. The emulated network will be monitored to investigate and determine if the 

extended VNF performed correctly with the newly introduced THz link(s). If the VNF does perform 

correctly, this completes this objective and provides proof that THz links can be successfully and fully 

integrated into a datacentre network. It also proves that SDN control of THz links is possible, thus 

enabling autonomous management of this links with an SDN controller. This has the potential to greatly 

increase the scalability and flexibility of any datacentre SDN utilizing THz links, as the network 

topology and functions performed can be dynamically and autonomously changed by the SDN controller 

based on the performance and service requirements requested by users and application on the network. 
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2.2 Background 

 

The motivation for this research stems from the investigation and creation of wireless devices capable 

of operating in the THz frequency spectrum. These devices are capable of data transmission, thus could 

potentially be feasible for use in network environments with high data rate requirements6. One of these 

environments is a datacentre, where data rate and reliability requirements exceed what is currently 

possible with traditional wireless technologies such as WiFi. Modern datacentres typically operate at 

data rates at a minimum of 10 Gigabits per second (Gbps) per link, scaling up to data rates up to and 

beyond 400Gbps7. In contrast, state of the art WiFi (802.11ax) cannot reach half of the minimum bitrate 

required, with realistic throughput often lower than specified8.  

This changes with the introduction of THz wireless links based on Uni-Travelling Carrier Photodiode 

(UTC-PD) technology however9. These devices are capable of achieving the data rates required in 

datacentre communication, with laboratory tests of these devices achieving data rates of 100Gbps10. This 

presents the potential for adoption of these new types of wireless links into a datacentre environment. 

In order for this to occur, a number of challenges must be overcome to integrate these devices with 

datacentre network devices.  

SDN is a key technology implemented in modern datacentre networks, enabling separation of a modern 

networks control plane from the packet processing data plane. This separation allows network function 

to be virtualized into software, and data plane devices created by different manufacturers to be controlled 

and managed inter-operably using a common API. The general architecture of SDN can be seen in 

Figure 2.1. Data plane devices such as network switches enable connectivity between all devices on the 

network using a variety of physical connections. In this example, the addition of THz links to the 

network is shown as a dotted red line alongside traditional copper connections in black, and optical 

connections in blue.  

To achieve SDN control of THz links as well as advanced THz VNF’s, the data plane devices must be 

capable of passing information about the physical parameters of the THz links to an SDN controller via 

an API. Once the controller has access to the THz parameter information, VNF’s can be created for  

using that information to enable network-level support for advanced THz features such as beam steering. 

Once these THz VNF’s have been standardized they can be integrated with a network management plane 

software, maintaining a heterogeneous network of copper, optical and THz links using its available 

VNF’s. The operation of this VNF’s and SDN controller will be defined by service-level agreements, 

which define what Key Performance Indications (KPI’s) are desired by the users of the network. This 

in turn will impact how the SDN controller autonomously manages its network of links in order to 

achieve the desired KPI’s.  

The integration of THz links with software defined networks will pave the way for adoption of the 

technology in datacentre environments. The ability for THz links to be autonomously configured in real-

time with future advanced features such as Multiple Input Multiple Output (MIMO), beam 

steering/switching, and Time Division Multiple Access (TDMA) could present a drastic change in the 

network architecture of future datacentre deployments. The increased flexibility offered by THz links 

over their copper or optical counterparts could enable future THz datacentre designs to utilize all 

possible available network bandwidth provided by the underlying infrastructure, something previously 

impossible with wired links. This combined with the ability to modify available bandwidth between 

devices within the infrastructure in real-time based on user requirements presents a strong argument for 

continued research and development for wireless datacentre links. 
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Figure 2.1: SDN Network architecture  

2.3 Testing Tools 

The following lists the tools that have been used for the testing and results gathering described in this 

deliverable. 

1. iPerf3 

a. Simple traffic generator11 

2. Wireshark 

a. Packet capture & analytics tool12 

3. Mininet 

a. Network Layer Emulator13 

 

2.4 Assumptions 

In order for development of network layer protocols to continue for THz links a number of assumptions 

must be made. In section 3 the development of a microcontroller used to control THz devices is 

described,  followed by the definition of SDN protocols based on this architecture. For section 4, it is 

assumed that this architecture has been already created for the purposes of implementing THz network 

functions. As microcontroller development for THz devices will not occur until much later in the 

commercialization process, the THz network functions have been developed using simulated values the 

SDN controller would receive from the microcontroller. These parameters are simulated within the range 

described by the global parameter list which specifies the physical device parameters and performance 

achieved by THz devices in the TERAPOD project.  
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3 Integration Frameworks for THz Wireless Links in a Software 

Defined Network 

3.1 Hardware Control System for THz Wireless Links 

The first step towards full-integration of THz wireless links as part of a Software-Defined network is 

development of an electronic system which can monitor and control the various physical-layer 

operations performed in THz wireless communication. For a THz link to be useful in data 

communication a number of physical parameters such as wireless frequency, power, noise, and more 

need to be known. These types of parameters must be monitored by various sensors placed throughout 

the THz system in order to ensure the hardware is operating within specifications. As the development 

and commercialization of THz devices continues, the creation of an Application Specific Integrated 

Circuit (ASIC) solely designed for management of a THz wireless system will be developed. This type 

of ASIC is often developed using a simple micro-controller, with basic functions and firmware 

developed to prevent damage to underlying THz hardware and maintain stable operation14. In datacentre 

networks, this type of ASIC design already exists to assist in the operation of laser-based optical links. 

The Small Form-factor Pluggable (SFP) standard is a widely used method in datacentres to insert various 

types of communication equipment into network devices15. These SFP modules primarily operate using 

copper or optical cables, with various levels of bitrate and range available depending on user 

requirements. In a laser-based optical SFP module, a micro-controller ASIC exists within the packaged 

module that automatically monitors and maintains operation of the laser according to specifications set 

by its manufacturer. Accompanying this ASIC is a block of Electrically Erasable Programmable Read-

only Memory (EEPROM). This memory is used by the ASIC to store values recorded by connected 

hardware sensors such as the lasers temperature, power consumption, wavelength and more. An example 

of the configuration of a laser SFP module can be seen in Figure 3.1, with the microcontroller ASIC and 

EEPROM memory located in the “Diagnosis” block. 

 

Figure 3.1: Internal configuration of an optical SFP module16  

While this ASIC can provide robust and stable operation of the hardware components inside its SFP 

module, it would be beneficial for the sensor data stored in EEPROM to be accessible to the host device 

the module is plugged in to. This would allow the host device to also monitor hardware performance 

and notify a network administrator with a warning if an SFP module is overheating or has encountered 

some other type of error. To facilitate communication between the host device and SFP module, an 

electrical communication bus is required. The Inter-Integrated Circuit (I2C) bus is the accepted standard 

to enable this communication17. This bus provides a two-wire (serial clock and serial data) limited 

electrical interface between the host device and the modules EEPROM.  
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As datacentre network switches typically contain several SFP ports, an I2C controller is often used to 

simplify access to each SFP modules EEPROM from the host devices perspective. An example of the 

operation of this controller can be seen in Figure 3.2, where the I2C bus master is the Central Processing 

Unit (CPU) of a network switch in this instance.  

 

Figure 3.2: Overview on an I2C controller, typically found on a network switch18 

In order for a network switch to correctly read and interpret the sensor data contained in an SFP’s 

EEPROM, the switches Operating System (OS) must contain the appropriate software to support 

interaction with an I2C bus. The majority of modern datacentre switches run an OS based on a Linux 

Kernel, with driver support for I2C communication immediately available19. Software can be written 

utilizing this driver to access and read the EEPROM memory of an SFP module. Values can also be 

written in certain circumstances, with the microcontroller executing a function to perform on a memory 

write event. The parameters and values stored in an SFP EEPROM block are standardized. A Multi-

Source Agreement (MSA) exists between all major manufacturers of SFP modules to store certain 

information and sensor values in specific memory locations. The SFF-8472 specification details the use 

of two addressable EEPROM memory blocks accessible via the I2C data bus20. One of these blocks is 

known as the information block, containing details about the SFP modules manufacturer, serial number, 

and other product information. The second diagnostic memory block contains sensor information about 

the optical hardware within the module. These memory blocks are arranged in a series of registers. Each 

register contains two hexadecimal digits, the product of which represents a decimal value range from 0 

to 255 (1 byte). Both memory blocks contain 256 registers, split into 128 block “pages”. The SFF 

specification details what information is stored in each register location, with some values represented 

as a product or function of two or more register values. To correctly interpret the information stored in 

these registers, a piece of software running on the switch’s OS must read the memory blocks using the 

I2C bus and decode the values it receives based on the SFF specification. When writing a value to 

EEPROM, if input is given in decimal form or another format it must be re-calculated and  re-encoded 

to the correct hexadecimal format required. A “raw” memory dump of both memory blocks can be seen 

in Figure 3.3, this particular memory dump being from a 1550nm SFP optical transceiver module. Note 

the large number of un-used “00” registers, suggesting available space for future specification 

expansion.   
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Figure 3.3: Contents of an SFP modules EEPROM memory blocks. 

The SFF-8472 specification has been updated numerous times since its inception, with the current 

revision version number being 12.3. Separate to this, a number of other SFF  specifications have been 

created to expand the functionality of optical SFP modules in significant enough ways to warrant a new 

specification. One of these specifications is SFF-8690, which standardizes the method to interact with 

and control optical SFP modules with tuneable laser wavelengths21. This specification achieves the 

implementation of this feature through the use of memory paging. On a tuneable SFP module, the 

diagnostic EEPROM block contains a third block of 128 memory registers. This third memory block is 

accessed by writing “02” to the 127th register of the first block, which triggers the microcontroller to 

change the information contained in the second-half of the EERPROM block to page 2, referring to the 

new register definitions created in SFF-8690 for tuneable SFPs. Having the new memory page accessible 

using this method allows these modules to be backwards compatible with existing SFP network devices, 

though without tuneability functionality. It may be possible for this functionality to be added to existing 

network devices with a software update, though some devices may not feature the EEPROM write 

functionality required. An excerpt from the SFF-8690 specification can be seen in Figure 3.4, showing 

some of the newly defined registers and what their values represent. Note that the manufacturer is given 

multiple options for which type of measurement unit they wish to use and store. Different unit types can 

be stored at different register locations, with flag registers defined to identify which particular units and 

mode the manufacturers microcontroller operates with. As there are a number of different possible unit 

systems and modes of operation of tuneable optical modules, all these different possibilities must be 

accounted for in the software of any network device and OS that wishes to support them.    
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Figure 3.4: Excerpt from SFF-8690 showing the definition of registers for controlling 

wavelength 

With the hardware-level operation of optical SFP modules now known, the applicability of this system 

to THz wireless links is evident. Development of THz wireless links based on the principles of the SFP 

specifications is a logical way of implementing THz device compatibility with standard datacentre 

network equipment, where the SFP standard is already ubiquitous. Like SFF-8690, we propose a similar 

extension which enables a new memory page containing all physical parameters related to the 

monitoring and operation of THz wireless links. Once THz devices reach maturity, a microcontroller 

can be developed to maintain operating stability of the THz device. This microcontroller will also 

perform all the new functions available, with it being capable of executing these functions when a user 

writes a new value to one of its new EEPROM registers. An example of some of the possible register 

definitions can be seen in Table 1. Note that these values are for reference only. The decision on what 

information to store and in what registers and format can be standardized when THz devices reach a 

higher Technology Readiness Level (TRL). Even after an official specification is defined, these 

specifications can still be revised to add new THz functions in future. Expanding on some of the example 

definitions provided in the table, the WF1 variable refers to the centre frequency of the THz link. This 

variable is two bytes in size, represent a maximum possible decimal value range from 0 to 65535. With 

units of 0.1 GHz, this gives a maximum possible range of 0.1 to 6553.5 GHz. While this is excessive 

given the current state of the art of THz devices, it leaves a very wide frequency range available for 

future THz devices without requiring a new revision. It must be considered that once a memory location 

has been defined, it cannot be changed in future revisions for backwards compatibility reasons. This 

means only registers which were previously un-used can be defined in future revisions. The CW1 

represents channel width, with a range of 0.01 to 655.35 GHz. If reduction in memory space is required, 

CW1 could be reduced to a single byte value, with a range of 0.01 to 2.25 GHz, 0.1 to 22.5 GHz or 1 to 

255GHz depending on requirements and device characteristics. TX power is a 4-byte value, ranging 

from a power output of 1nW up to 4.29W (232). Bitrate shares the same range as WF1, representing 

100Mbps to 6.5Tbps. Bit-Error-Rate (BER) is a single byte value with a range from 1x10-1 to 1x10-255.  

Other methods to detect and control the error rate of the active THz link can be defined and can be 

automatically controlled by the Physical (PHY), Data-Link, (DLL) or Network layer(NET) depending 

on user demands. The modulation scheme used can similarly be automatically decided by the 

microcontroller based on other THz device factors, or it can be “manually” selected by the DLL or NET 

layers by writing the desired value to the register. MCS index in this context refers to an index used in 

the 802.11 WiFi specifications related to modulation formats (QPSK, QAM-16 QAM-256 etc.). 

Alternatively, a number of the previously mentioned variables can be defined such that they are 

compliant with an associated IEEE specification, such as IEEE 802.15.3d-201722. Defining variables in 

this fashion ensures they are compliant with the specification, while also potentially reducing the 

memory space required for some variables such as frequency and channel width due these variables now 

having a fixed range according to the specification.  
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A2h Address Size Name Description 

Bytes 132 (MSB) & 133 (LSB) 2 bytes WF1 Wireless link frequency (GHz), in units of 0.1 GHz 

Bytes 134 (MSB) & 135 (LSB) 2 bytes CW1 Wireless channel width (GHz), units of 0.01 GHz 

Bytes 136 (MSB) - 139 (LSB) 4 bytes TX1 Wireless TX power (W), units of 10-9 W (nW) 

Bytes 140 (MSB) - 143 (LSB) 4 bytes RX1 Wireless RX power (W), units of 10-9 W (nW) 

Bytes 144 (MSB) – 145 (LSB) 2 bytes DR1 TX Bitrate (Gbps), units of 0.1Gbps 

Bytes 146 (MSB) – 147 (LSB) 2 bytes DR2 RX Bitrate (Gbps), units of 0.1Gbps 

Byte 148 1 byte BER1 RX Bit Error Rate (BER), measured as 1x10-X 

Byte 149 1 byte MCS1 TX Modulation scheme, measured as MCS index 

Table 1: Example of some possible register definitions for THz wireless links 

In the event that more than 128 bytes of memory are required to store all the parameters necessary for 

THz operation, extra memory “pages” can be added as required as the majority of the 255 available 

pages are currently unassigned. Certain parameters can also be derived using a more complex formula 

instead of a simple product.  

These example values represent the structure which can be defined to integrate THz wireless links with 

the SFP specification. A specification extension designed in this way would allow for backwards-

compatibility with existing SFP network devices. Functionality would be limited for existing devices 

due to the lack of software functionality to inspect for and decode the new THz pages. The THz hardware 

can still operate and establish a THz link in this case however, as the embedded microcontroller can 

sweep and search for other THz links in the area and establish a point to point link if another device is 

found. For more advanced features such as THz beam steering or point to multi-point communication, 

the ability of the SFP host device to communicate with the microcontroller is required. This can be 

achieved on standard datacentre switch by updating its OS with new software code to read and write to 

the new THz EEPROM page(s). This would enable the switch and hence the network administrator to 

control and configure the THz link as they desire.  

While user control of THz links has been established at this point, integration of THz links with SDN 

has not yet been achieved. At this point controlling the THz link can only be done from within the switch 

itself, either manually by a user or automatically via the OS.  In order for the links to be considered part 

of a Software-Defined Network, they need to be controllable and configurable from an autonomous 

SDN controller. This means that the THz EEPROM values need to be abstracted such that they are 

accessible and able to be modified by a remote device. The use on an SDN process, protocol, and API 

are necessary to achieve this type of functionality. There are a number of SDN protocols available, and 

the implementation of new features such as THz link monitoring and control is highly varied and non-

trivial for each protocol. In many cases once a specification or revision is created for an SDN protocol, 

it is not backward compatible with legacy devices. The reason for this is that many SDN control 

protocols are highly integrated into the data plane (DLL), meaning support for a specific version of that 

protocol is defined in the hardware of a network switches packet processing ASIC. This often means 

that any revision of an SDN protocol that requires an increase in memory space is unlikely to be 

supported by an existing packet forwarding ASIC, as the ASIC was fabricated without the required 

memory space. This is not necessarily true for all SDN protocols however. An investigation on how to 

abstract these THz parameters with three of the major SDN protocols will now be documented. 
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3.2 OpenFlow Implementation 

 

The OpenFlow protocol is the original and most widely-known protocol in SDN. This pioneering 

protocol introduced the concept of a network with a centralized control plane. This control plane forms 

the basis of the “brain” of the network, controlling network functions such as routing, firewalling and 

load balancing. This control plane is fully software-based and can be run on any commodity server. This 

control plane connects to an OpenFlow supporting network switch using the OpenFlow API. This switch 

no longer operates using its own internal control plane, leaving only the packet-processing ASIC (known 

as the data plane) available to be configured. OpenFlow supporting ASIC’s contain a data path 

architecture that processes incoming packets through a series of flow tables containing flow rules. Each 

incoming packet progresses through the available flow tables until it successfully matches an existing 

flow rule. Each rule in a flow table has an associated action to perform when a packet is matched to it 

such as sending the packet out a specific port, sending the packet to an SDN controller for inspection, 

dropping the packet and more. A diagram of the standard OpenFlow architecture can be seen in Figure 

3.5. An SDN controller connects to the OpenFlow Channel/Agent service which runs on the switch OS 

and installs new flow rules and actions into its packet forwarding ASIC, based on what network 

functions the user has chosen to implement on the network. Thus, network functions such as routing and 

load balancing can now be achieved on a network by installing the correct set of flow rules and actions 

on each device in the network. This eliminates the need for separate hardware devices to perform these 

actions as is required in traditional networking. It also removes the need for complex and proprietary 

control planes in each network device, thus enabling heterogenous network infrastructures with inter-

operable OpenFlow network devices available from any supporting manufacturer. This is in contrast to 

traditional networking, where many control plane management systems were proprietary and specific to 

each manufacturer. The advantages presented by software defined network functions and 

commodification of network devices has led SDN and the OpenFlow protocol to become widely adopted 

in datacentre environments and beyond.   

 

Figure 3.5: Overview of OpenFlow Architecture23 
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The OpenFlow protocol has seen many major revisions since its inception, adding new and improved 

features for each successive revision. One major revision of the OpenFlow protocol is version 1.4, which 

added support for tunable optical SFP modules based on the previously mentioned SFF-8690 

specification. To enable this functionality in OpenFlow, the addition of new memory blocks (also known 

as structs) was required. These structs play a key role in the operation of the packet forwarding ASIC, 

as it uses them to store and update many variables used in real-time as packets are processed through 

the flow table pipeline. One of these structs can be seen in Figure 3.6, specifying a number of variables 

which can be used to store information for the optical properties of tuneable SFP modules. It is 

noticeable that the size in bytes and names of these variables are not exactly the same as the SFF-8690 

specification, signifying that a software translation of these variables to the specification occurs 

elsewhere in the process.  

 

Figure 3.6: The addition of a struct to control optical wavelength in OpenFlow 1.424 

As the addition of these new structs in version 1.4 required significant changes to both the memory and 

hardware functionality of OpenFlow supporting devices, it resulted in the version being incompatible 

with all previous versions of OpenFlow. This means that a network ASIC manufactured to the 1.3 

specification is not capable of being updated to 1.4. This disadvantage has to be taken into consideration 

when designing and implementing OpenFlow support of THz links. The implementation of THz links 

in OpenFlow follows the same design principles as the implementation of support for SFF-8690. A new 

subsequent protocol version can be defined, and a series of memory structs can be created that mimics 

the design of the EEPROM parameters for THz links. An example of this THz struct can be seen in 

Figure 3.7. Based on the OpenFlow 1.4 specification these variables will also be independent from the 

associated THz SFF specification and will be transformed to the required values by a software function. 

As previously mentioned, this implementation will be incompatible with devices supporting previous 

version of OpenFlow due to memory and hardware differences. A THz SFP module could still transmit 

and receive data on a legacy OpenFlow switch, but visibility and control of the THz parameters and 

features would not be available to the SDN controller. Nevertheless, developing support of THz links 

with the OpenFlow protocol should be considered, as it remains the most ubiquitous SDN protocol with 

a large development community surrounding it. It is also the simplest method of achieving full data-

plane integration of THz links using a single protocol. Its fixed hardware nature and high production 

volumes allow for rapid prototyping with lower development costs and likely a shorter time to a 

production-ready release in comparison to other SDN protocols. 
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Figure 3.7: Example possible OpenFlow struct for THz parameters   

3.3 P4 Implementation 

P4 is a programming language specifically designed for use with data plane devices. P4 aims to change 

the way traditional packet forwarding is designed and implemented. The original specification was 

created in 2014, with an updated specification released in 20162526. P4 follows the same principle for 

forwarding packets as OpenFlow as it also contains a match-action table structure. Unlike OpenFlow 

however, the process by which a packet is processed through the pipeline is now programmable instead 

of fixed in nature as it is OpenFlow. P4 achieves this by having programmable parsing logic. In a 

traditional network, packets sent though the network are constructed following the standard Open 

Systems Interconnect (OSI) model. Packets in this model contain strictly defined headers with each 

header identifying the protocol it is operating on, and other relevant values related to the use of that 

protocol. A traditional packet processing ASIC contains a fixed function pipeline where each function 

is designed to parse and process a specific header and protocol. OpenFlow devices also use fixed parsing 

logic. By using programmable parsing logic P4 network devices are protocol independent, meaning its 

packet processing capabilities are not limited by the OSI model or currently defined network protocols. 

A network built entirely of P4 devices could enable a fully software-defined data plane, where packet 

headers can be created, parsed and processed using a definition entirely developed by the owner of the 

network. This definition can also be re-configured on any device at any time after deployment, enabling 

new network protocols to be created and implemented on existing devices, where the creation of a new 

ASIC/device would be required in OpenFlow to support the new protocol. This software-defined parser 

also enables the P4 architecture to be compiled and implemented across multiple different device 

architectures while sharing the same functionality. These devices for which P4 code can be compiled 

for are known as targets, and can include standard CPU’s, Field Programmable Grid Arrays (FPGA’s), 

Systems on a Chip (SoC’s) and ASIC’s.  Programmable actions are also possible with P4, which gives 

the user a high amount of flexibility in what to do with a packet compared to the fixed number of actions 

possible using OpenFlow. P4 also contains a feature known as externs, these externs are values or 

parameters than can be used to store information outside of the packet processing pipeline thus enabling 

stateful processing. The P4 architecture model can be seen in Figure 3.8.  
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Figure 3.8: P4 Architecture Model 26 

A user creates their P4 program containing all their desired network functions in the form of parsing and 

action code. This code is created based on a manufacturer-created architecture model, which specifies 

the externs available on the target device and the arithmetic logic operations it is capable of performing. 

This program is then compiled by a P4 compiler which is also supplied by the manufacturer of the target 

device. The compiler loads the defined parsing and action logic into the data plane of the device and 

specifies the desired API to allow the control plane SDN controller to interact with the device. The SDN 

controller can us this API to install new rules in the match-action tables and read from and write to the 

available extern objects. The capabilities of P4 make it a very powerful language for datacentre 

networks, with the improved flexibility it brings compared to OpenFlow being considered to out-weigh 

the disadvantage of increased complexity.  

In order for THz links to be configurable by an SDN controller using P4, a number of conditions must 

be met. Firstly, the data plane device must contain an I2C bus in order to access the SFP microcontroller. 

Secondly, control logic must exist within the P4 ASIC to allow access to the THz SFP EEPROM in the 

form of addressable extern values. The ability for registers to be defined can be seen in Figure 3.9, 

showing how to initialize a bank of registers and how to read and write to a specific register. This is a 

standard feature defined in the P4-16 specification. The ability to define a bank of registers means that 

definition of a register bank that matches the proposed THz SFF specification is possible. Example P4 

code to create a THz parameter register bank and associated read and write functions can be seen in 

Figure 3.10. There are a few things to note about this example. The first is  the definition of the memory 

bank follows that of the EEPROM, with a bank of 128 registers (2nd page of the diagnosis block) which 

are 8 bits (1 byte) in size. Defining the bank in this way would allow for a direct mapping of the 

EEPROM registers to the P4 memory bank, thus requiring no translation function to be necessary.   

  

 

Figure 3.9: Example of how to access registers as extern values in a P4 program26 
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It can be seen in the register definition for THz frequency however that it requires a size of 16 bits as 

given in the SFF specification. There are a number of solutions to this. The first is to simply modify the 

code to split the register definition into two separate 8-bit sections and re-combine them to get the correct 

value, performing the inverse for a write operation. The next solution is for the device manufacturer to 

define a function in their architecture model which automatically recognizes when a defined register 

exceeds the size of a single register in the memory bank. When the read or write function is called, it 

will automatically re-factor the register for the correct size of the bank based on the index value, adding 

1 to the index value for every 8 bits. An indirect memory bank mapping is also possible as seen in 

OpenFlow, where a memory bank with 32-bit registers is defined. In this case, a function to translate 

the values to the SFF specification will be required in the manufacturer’s architecture model.  The index 

value of 4 in this example refers to the first register used to define THz frequency in the example SFF 

specification. Byte 132 is 4th byte in the new EEPROM page.  

 

Figure 3.10: Example definition of P4 THz extern value 

A THz memory bank should be available for each SFP port contained on the switch. Once the extern 

mapping is completed, match-actions can be created that read or write to the extern registers. 

Programmable actions can be created which can access and modify THz link parameters in real-time on 

a packet by packet basis if required. This could be useful for implementing THz features such as high-

speed beam steering or switching in the future. These extern values will also be accessible to the SDN 

controller via the chosen control plane API, where a network of P4 THz switches can be monitored by 

the controller and network functions can be implemented. Given the programmable nature of P4, it is 

also possible for new THz features added in a future SFF specification to be programmed into already 

existing P4 devices. Provided it has the correct architecture model to allow for changes in register 

definitions. The software-defined nature of controllers also allows them to be updated to support new 

THz features as  they become available.  

 

3.4 NETCONF 

The NETwork CONFiguration (NETCONF) protocol pre-dates the era of SDN, and previously existed 

as a network protocol which could be used to remotely change the configuration of supporting network 

devices. A remote network device such as a user or SDN controller can connect to a network device 

such as a switch or router using the NETCONF protocol and read or update the devices current 

configuration. To achieve this, a NETCONF server must be ran as a service contained within the network 

devices OS. This NETCONF service maintains a datastore of Yet Another Next Generation (YANG) 

modules. These modules are used to define specific parameters that are available to be configured on 

the network device. When a user or controller wants to change or read the configuration of a device, it 

connects to the NETCONF server and sends or requests data in the same structure and format of that 

YANG module.  An example diagram of the NETCONF architecture can be seen in Figure 3.11, where 

a modern SDN controller replaces the user and management systems previously used.  
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Figure 3.11: NETCONF system architecture27 

A NETCONF server is designed to contain an API that enables OS-level applications to access and 

update parameters stored within its YANG-defined datastore. It also allows applications to contain a 

call-back function which executes when the parameter it is monitoring in the datastore is updated from 

a remote device. To achieve SDN control of THz links with the NETCONF protocol, a NETCONF 

server and data handling service needs to be installed on the OS of the network device (in this example,  

a switch). “Sysrepo” is an application which provides this service as a complete solution for network 

devices operating on a Linux-based OS28. An architecture diagram for this solution can be seen in Figure 

3. 12, showing the process of accessing and configuring a THz SFP module from the SDN controller on 

the left to right.  

 

Figure 3. 12: NETCONF Architecture to Implement THz links   
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The first step for integrating control of THz links with the Sysrepo engine is development of an 

application which can access and modify the THz EEPROM registers using the I2C bus. This can be 

achieved using the C programming language, as it contains native driver headers to utilize the I2C bus 

and is also the API used between Sysrepo and the host OS. Once application control of the THz device 

is verified, a YANG module needs to be created that is based on the EEPROM register definitions in the 

example SFF specification. An example of this YANG module can be seen in Figure 3.13, which defines 

the type and size of the parameters utilized by the THz module. 

 

 

Figure 3.13: Example YANG model containing THz link parameters 
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Once this YANG module is installed in the Sysrepo datastore, the C application can be modified to 

connect to the Sysrepo service, and independent functions can be defined for each leaf parameter value 

found within the YANG module. The C application can periodically update the datastore with new 

information taken from the THz EEPROM or can wait for the datastore to be updated remotely, 

signifying a desired configuration change and writing the new value in the datastore to the THz 

EEPROM. The function performed by the C application can be tailored to user requirements and use 

cases. Similar to previous protocols, a C translation function can exist in the application to convert 

between the YANG values and the EEPROM values. Once the YANG module is installed and the C 

application is connected to Sysrepo, the THz SFP module is available to be configured from an SDN 

controller. The controller can connect to the NETCONF server running on the switch and using the THz 

YANG module, read or write to parameters within that module to control the THz link. A major 

advantage to this implementation compared to OpenFlow or P4 is that it is backwards-compatible with 

existing network devices. Unlike those protocols where a new specification or architecture model is 

required, the NETCONF system is fully software-based and as such is implementable on any device 

using a Linux OS kernel and containing an I2C bus at any time. Like P4 it can also be updated to enable 

new THz features on any device as they become available, only requiring an updated YANG module 

and C code. One major disadvantage to this implementation is the lack of interoperability with packet 

forwarding ASIC’s. This means traditional networking or the use of a second SDN protocol is required 

by the SDN controller to achieve full control of all network devices. This increases the complexity of 

programming VNF’s for the SDN controller, as now the application needs to be written to operate with 

two different SDN API’s at once. This trade-off could be seen as acceptable however to enable SDN 

control of THz links on legacy network devices. 

3.5 Summary 

In summary, this section of the deliverable has defined how to implement SDN control of THz links in 

datacentre networks based on an extension of the SFF specification for SFP modules. Abstraction of 

this specification to be configurable via an SDN controller was then described for three common SDN 

API’s  OpenFlow, P4, and NETCONF. As shown in the description of this API’s there are a number of 

advantages and disadvantages to the implementation of each, thus the protocol chosen to be 

implemented may depend on the requirements of the THz link user and their KPI’s. Table 2 below shows 

a summary comparison of some important KPI’s which should be considered when implementing SDN 

control of THz links. Real-time Features is an important metric for THz wireless links and describes 

functions which require a very high processing speed when a configuration change is made. THz beam 

steering can be considered a feature which requires this in order to implement advanced wireless 

network techniques such as Time-Division Multiple-Access (TDMA). Such features are not possible 

with the NETCONF protocol as the control plane is not capable of changing the configuration at the rate 

required. While possible with the OpenFlow protocol, its fixed-function data plane limits the capabilities 

of real time features. This makes P4 the protocol of choice for development of advanced THz network 

features and should be considered as the long-term choice for future THz SDN development. 

KPI OpenFlow P4 NETCONF 

Complexity Medium High Low 

Development Time Medium High Low 

Upgradeability Low High High 

Data Plane Control Fixed Programmable None 

THz Control Speed Fast Fastest Slow 

Backwards Compatible No No Yes 

Real-time Features  Limited Supported None 

Table 2: Comparison of KPI’s for implementing SDN control of THz links 
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4 THz Network Function Virtualization 

With abstraction of THz links parameters to the network layer achieved, VNF’s utilizing these 

parameters must be created to enable effective control of these THz links at the network layer. The first 

step in this process is to choose an SDN controller to test implementation of THz VNF’s with. An SDN 

controller known as Ryu was chosen for this task. It is an SDN controller based on the Python 

programming language and contains several functions and features useful for SDN development29.  

Ryu’s software architecture can be seen in Figure 4.1, showing the data plane network switches at the 

bottom connecting to Ryu via OpenFlow or another protocol. Ryu contains a number of built-in apps to 

provide basic network layer functions such as topology discovery, firewalls, and more. A user could 

choose to expand the built-in apps in Ryu to support THz links or develop an independent VNF which 

interfaces with the controller, denoted by the SDN apps in this diagram.  

 

Figure 4.1: Ryu SDN Controller Architecture29 

4.1 Topology Discovery 

One potentially major change to the way SDN will operate with THz wireless links is in the method of 

topology discovery. Traditionally, a wired point-to-point link only has one possible destination. The 

Link Layer Discovery Protocol (LLDP) exploits this principal to determine what devices are connected 

to each other on the networks data plane. An SDN controller sends a command to a connected switch to 

perform LLDP on a specific port. This port sends an LLDP packet out of its interface, which is received 

by a port on another switch. When this switch detects it received an LLDP packet it responds with its 

own unique identifier, and the port on which it received the packet contained in a metadata format. With 

future THz links capable of beam steering, point-to-multipoint communication between devices 

becomes possible. In order for LLDP to support this new form of communication, a number of changes 

have to be made. The topology discovery function contained within the SDN controller must be modified 

in order to support the concept of point-to-multipoint communication. This can be achieved by 

programming the controller and topology discovery function to maintain metadata tables which can 

contain more than a single instance of an LLDP respondent. This table can later be used to determine 

what THz-enabled switches are within range to establish a connection with each other, including if more 

than one THz link is available between a set of switches.     
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Figure 4.2: Example LLDP sequence diagram for THz links 

In order to detect other THz links in range, the THz device will need to perform a detection process to 

scan for other possible THz links. This detection process can be standardized as a microcontroller 

function in the THz SFF specification, or it can be implemented as a DLL function embedded in the 

switches forwarding ASIC. When an LLDP packet is received, this triggers the THz detection function, 

which sweeps and sends a further LLDP packet to all THz receivers within its range. The receiving 

switches recognize this LLDP packet and respond to the controller on the control plane network specify 

what switch they are and what port they received the LLDP packet on. A sequence diagram for the 

operation of the new THz LLDP function can be seen in Figure 4.2, where a traditional point-to-point 

LLDP sequence can be seen in black. The expanded operation of the new point-to-multipoint THz LLDP 

can be seen in green and red, showing the THz detection process and switch metadata response to the 

controller.    

 

4.2 THz Routing, Load Balancing, & Fail-over  

For effective utilization of THz links at the network layer, common network functions need to be 

updated to interact with the new THz parameters. While an SDN controller could now successfully 

access and modify the THz controlling registers located in a THz SFP module, the usefulness of this 

ability is limited until it is incorporated into an SDN controllers’ built-in or external network functions. 

Once incorporated into a VNF, control of the THz link can be automated instead of requiring manual 

input. To test this, a network testing environment needs to be created. This network environment was 

created in the network emulation tool Mininet, mimicking a collapsed tree model typically found in a 

datacentre environment. The network topology tested can be seen in Figure 4.3, with 16 hosts and 21 

switches. An SDN controller (not pictured) is controlling all the switches via the OpenFlow protocol. A 

number of THz links like between host H6 and host H3, which will be the basis for testing of network 

functionality of new THz NFV’s.  



D5.6: Final NETWORK Layer and Management Model 21 

 

 

 

Figure 4.3: Network topology for THz NFV testing 

The first step in improving utilization of THz links is the development of a routing algorithm which 

considers various THz parameters when calculating its routing decisions.  In this example all THz links 

in the demonstration are set to a bandwidth of 10Gbps, while all wired links are set to a bandwidth of 

1Gbps. The reason for this is to design the THz routing algorithm to initially favour routing traffic 

between H3 and H6 over the THz links. This routing algorithm is quite simple and is based on creating 

a path cost value for various potential routes between H3 and H6. The switch begins the route calculation 

with the switch connected to H3 and calculates the cost of the available paths based on the available link 

bandwidth. The available bandwidth cost is measured based on current throughput load of the link versus 

its maximum bandwidth. In this case a new parameter is added when calculating the cost of a route path: 

the THz transmission power. If the algorithm detects that the connection between the current hop and 

the next is a THz link, it will adjust the cost associated with path based on the current THz transmission 

power of the device. An excerpt from this algorithm can be seen in Figure 4.4. 

 

Figure 4.4: Excerpt of Ryu Thz Routing algorithm 
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As previously mentioned, the initial state of the routing algorithm should favour using the 10Gbps THz 

links. During link testing however, the THz transmission power is set to slowly lose power over time. 

This should eventually cause the routing algorithm to switch the data flow between H3 and H6 over to 

the 1Gbps when the path cost for the THz link exceeds that of the wired link. In this example an available 

bandwidth of 1Gbps between nodes is given a cost of 10, while a 10Gbps link is given a cost of 1. A 

THz transmission power of 1 micro-watt (μW) is given a cost of 1, with a transmission power of 0.1 μW 

given a proportional cost of 10. This routing algorithms runs continuously within the SDN controller as 

a background process. This means as the transmission power of the THz device weakens over time, the 

SDN routing algorithm should automatically switch the flow of traffic between H3 and H6 from the 

THz link to the wired link once the cost of the THz link exceeds the cost of the wired link. If the 

controller performs this action successfully, it signifies the algorithm is capable of enhanced routing, 

load-balancing, and fail-over capabilities. While this example algorithm is simple in nature, it provides 

a proof of concept for the successful implementation of future and further advanced THz VNF’s. The 

results of the test can be seen in figures Figure 4.5. A TCP is sending the maximum amount of data 

possible between H3 and H6. During this test THz transmission power is slowly weakening, until the 

route cost for the THz link exceeds that of the wired link at t=14 seconds. At this point the controller 

successfully re-routes the traffic to be sent over the wired link at 1Gbps.  

 

Figure 4.5: TCP test showing re-routing of THz traffic through loss of throughput 

It is important for network reliability purposes that this path change and fail-over procedure occurs with 

minimal delay.  Figure 4.6 contains packet capture data which shows the service interruption delay 

caused by the path change. In this example, network connectivity was restored in 310ms, as noted by 

the maximum TCP delta time. This time represents the value of time in seconds which passed between 

this packet being received and the previous one in the TCP sequence. 

 

Figure 4.6: Latency test result for THz fail-over function 
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5 Conclusions 

Based on the investigations performed and results gathered in this deliverable, we can conclude that full 

integration of Terahertz-based wireless devices with software-defined datacentre networks is possible. 

A number of methods have been found to implement SDN control of THz links and their introduction 

into a datacentre environment could cause a dramatic change in the architecture and behaviour of 

networks that use them. With the bitrates offered by THz devices continuing to increase, their improved 

flexibility combined with their convenience and potentially reduced physical footprint make them a very 

lucrative technology in space-saving datacentre network designs. THz technology features such as beam 

steering have the potential to enable radically different network architectures in the future, with the 

future potential features and performance of this technology in infrastructure networks exceeding that 

of both wired and other wireless technologies. 

This deliverable satisfies a number of requirements defined in TERAPOD WP2, these are: REQ-F08 to 

F-13, F-20, F-23, and N06 to N10. 
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