

The Car2TERA project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824962.

Project presentation, B5G 3TTCW workshop

2021-03-11 Joachim Oberhammer, KTH Royal Institute of Technology Scientific Coordinator joachimo@kth.se +46 737 652368

Impact of Car2TERA : Bringing THz technology into the car

- Maintain Europe's technology/market dominance:
 - 79% world market share on car radars
 - 90% world market share on SiGe radar chip sets
 - Leading in pushing SiGe into THz gap (f_{MAX}=700 GHz)
 - 2 of 3 largest telecommunication system providers
- Car radar* + in-cabin monitoring**: no. 1 and no. 2 fastest growing car electronics markets

CAGR CAGR 2018-2023: *18% **49%

Who are we?

- 3 large enterprises: Veoneer, Ericsson, Infineon
- 3 SME:
 - Technikon*, VIGO/Ent, Anteral
- 2 academic: KTH, Chalmers
- * coordinator

Car2TERA Demonstrators

- TRL-4 demonstrators for two highpotential applications:
 - 1. Short-range, high-resolution, low-latency, large-bandwidth, compact radar sensor; for in-cabin passenger monitoring
 - 2. "THz-over-plastic": low cost, robust high-speed wired short range communication link (>100 Gbit/s)

Car2TERA: New and emerging technologies

- Highly integrated, volume-manufacturable THz technology:
 - Micromachined THz systems with MEMS reconfigurability
 - Latest-generation industrial SiGe MMICs with 600 GHz f_{MAX}
- 2D materials: high-linearity graphene MMICs
- Sub-THz radar technology:
 - OFDM radar signals
 - Unconventional radar concepts (beam-shape switching)
- THz-over-plastic data links at sub-THz frequencies

Micromachined THz system toolbox available to Car2TERA

Micromachined THz system toolbox available to Car2TERA

DEMONSTRATOR 1: sub-THz car radar sensor

DEMO1 : sub-THz car radar sensor

- Primary application: in-cabin passenger monitoring
- Requirements:
 - High resolution
 - Compact size
 - Low power; MMIC cost
- Proposed solution:
 - 10 GHz BW, 238-248 GHz band
 - Single Tx/Rx channel MMIC
 - 2 steerable antennas

Large BW, high-frequency

small antenna array

Min. number of TxRx channels,

DEMO1 : sub-THz car radar sensor

 Unconventional radar concept: <u>Beam-shape switching</u>: Trade-off between small physical aperture compensated by complementary information of different beam shapes

DEMO1 : sub-THz car radar: beam-steering front-end

- Micromachined waveguide system:
 - 2-level waveguides on silicon micromachined chip
 - 6 MEMS waveguide switches (IL<0.6 dB; ISO>50dB)
 - 2x8 antenna array, ampl.tap.
- RL: >12 dB; IL: <1.8 dB
- Modularity: SiGe MMICs (600 GHz f_{max}) via WM-864 flange

DEMO1: Car radar sensor: Signal processing strategies

- Deterministic: iFFT, min/max search:
 - Poor performance for distributed targets

- AI / machine-learning:
 - CNN/MLP networks
- Computational imaging:
 - Most promising for distributed targets

DEMONSTRATOR 2: THz over plastic

Proposed Demo-2 setup

- 56/112 Gbps over 0.5m (exploring >10 m as well)
- RF carrier in PMF: 200 250 GHz
- Waveform: PAM4 (with NRZ and 16QAM option)

Integration perspective: Avoiding carrier/interposer

Industrial-grade SiGe multi-function MMICs used for both demonstrators

- Infineon's B12HFC process:
 90-nm SiGe BiCMOS 300/600-GHz f_T/f_{max}, 7 Cu-BEOL
- generic circuits including amplifiers, I-Q/PAM modulators and demodulators, voltage controlled oscillators, RF-DACs, and frequency multipliers
- => Multifunctional, highly integrated MMICs

MMIC architecture, 170-250 (280) GHz

GFET MMIC development

- GFET FoM (sim): Switching time
 R_gC_g = 0.5 ps => 320 GHz
- Expected conversion loss: Min (CL) = 13 dB
- Expected IIP3: Max(IIP3) = 26 dB
- Fabrication under way

Conclusions

- Large number of emerging THz technologies
 - Micromachined THz system integration; MEMS-waveguide switches
 - Industrial-grade 600-GHz SiGe
 - Graphene-FET
 - THz-over-plastic
 - Beam-shape switched radar sensors
- 2 demonstrators:
 - in-cabin car radar sensor
 - THz-over plastic communication link

The Car2TERA project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824962.

Grant Agreement No. 824962

Project coordinator

Martina Truskaller Technikon Forschungs und Planungs-GmbH 9500 Villach, Austria coordination@car2tera.eu

Scientific Coordinator

Joachim Oberhammer KTH Royal Institute of Technology 100 44 Stockholm, Sweden joachimo@kth.se